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Learning objectives

1 Understand measures of financial risk, including Value at Risk

2 Understand the impact of correlated risks

3 Know how to use copulas to sample from a multivariate
probability distribution, including correlation

The information presented here is pedagogical in nature and
does not constitute investment advice!

Methods used here can also be

applied to model natural hazards

2 / 41

https://risk-engineering.org/?src=pdfslide


Warmup. Before reading this material, we
suggest you consult the following associated
slides:

▷ Modelling correlations using Python

▷ Statistical modelling with Python

Available from risk-engineering.org
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Risk in finance

‘‘There are 1011 stars in the galaxy. That used to
be a huge number. But it’s only a hundred
billion. It’s less than the national deficit! We
used to call them astronomical numbers.
Now we should call them economical
numbers.

— Richard Feynman
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Terminology in finance

Names of some instruments used in finance:
▷ A bond issued by a company or a government is just a loan

• bond buyer lends money to bond issuer

• issuer will return money plus some interest when the bond matures

▷ A stock gives you (a small fraction of) ownership in a “listed company”
• a stock has a price, and can be bought and sold on the stock market

▷ A future is a promise to do a transaction at a later date
• refers to some “underlying” product which will be bought or sold at a later time

• example: farmer can sell her crop before harvest, at a fixed price

• way of transferring risk: farmer protected from risk of price drop, but also
from possibility of unexpected profit if price increases
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Risk in finance

▷ Possible definitions:
• “any event or action that may adversely affect an organization’s ability to achieve its

objectives and execute its strategies”

• “the quantifiable likelihood of loss or less-than-expected returns”

▷ Main categories:
• market risk: change in the value of a financial position due to changes in the value

of the underlying components on which that position depends, such as stock and
bond prices, exchange rates, commodity prices

• credit risk: not receiving promised repayments on outstanding investments such as
loans and bonds, because of the “default” of the borrower

• operational risk: losses resulting from inadequate or failed internal processes,
people and systems, or from external events

• underwriting risk: inherent in insurance policies sold, due to changing patterns in
natural hazards, in demographic tables (life insurance), in consumer behaviour, and
due to systemic risks

Source: Quantitative Risk Management: Concepts, Techniques and Tools, A. J. McNeil, R. Frey, P. Embrechts
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Stock market returns

201
3-0

1
201

3-0
3

201
3-0

5
201

3-0
7

201
3-0

9
201

3-1
1

201
4-0

1

3600

3800

4000

4200

CAC40 over 2013

201
3-0

1
201

3-0
3

201
3-0

5
201

3-0
7

201
3-0

9
201

3-1
1

201
4-0

1
−0.04

−0.02

0.00

0.02

Daily change in CAC40 over 2013 (%)

Say we have a stock
portfolio. How risky is our
investment?

We want to model the
likelihood that our stock
portfolio loses money.
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Value at Risk

▷ Objective: produce a single number to summarize my exposure to market risk
• naïve approach: How much could I lose in the “worst” scenario?

• that’s a bad question: you could lose everything

▷ A more informative question:
• “What is the loss level that we are X% confident will not be exceeded in N business days?”

▷ “5-day 𝑉𝑎𝑅0.9 = 10 M€” tells us:
• I am 90% sure I won’t lose more than 10 M€ in the next 5 trading days

• There is 90% chance that my loss will be smaller than 10 M€ in the next 5 days

• There is 10% chance that my loss will be larger than 10 M€ in the next 5 days

▷ What it does not tell us:
• How much could I lose in those 10% of scenarios?

8 / 41

https://risk-engineering.org/?src=pdfslide


Value at Risk

Value at risk

Ameasure of market risk, which uses the statistical analysis of historical market trends and volatilities
to estimate the likelihood that a given portfolio’s losses (𝐿) will exceed a certain amount 𝑙.

VaR𝛼(𝐿) = inf {𝑙 ∈ ℝ ∶ Pr(𝐿 > 𝑙) ≤ 1 − 𝛼}

where 𝐿 is the loss of the portfolio and α ∈ [0, 1] is the confidence level.

If a portfolio of stocks has a one-day 10% VaR of 1 M€,
there is a 10% probability that the portfolio will decline
in value by more than 1 M€ over the next day, assuming
that markets are normal.
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Applications of VaR

▷ Risk management: how much financial risk am I exposed to?
• Provides a structured methodology for critically thinking about risk, and

consolidating risk across an organization

• VaR can be applied to individual stocks, portfolios of stocks, hedge funds, etc.

▷ Risk limit setting (internal controls or regulator imposed)
• Basel II Accord (financial regulation) attempts to ensure that a bank has

adequate capital for the risk that the bank exposes itself to through its lending
and investment practices

• VaR is often used as a measure of market risk

• Provides a single number which is easy to understand by non-specialists
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Limitations

of

VaR

▷ Typical VaR estimation methods assume “normal” market conditions

▷ They do not attempt to assess the potential impact of “black swan”
events
• outlier events that carry an extreme impact

• example: effects of cascading failure in the banking industry, such as the
2008 subprime mortgage crisis

▷ More information: see the slides on Black swans at
risk-engineering.org
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Alternatives to VaR
DIFFICULT

▷ VaR is a frequency measure, not a severity measure
• it’s a threshold, not an expectation of the amount lost

▷ Related risk measure: Expected Shortfall, the average loss for losses larger
than the VaR
• expected shortfall at 𝑞% level is the expected return in the worst 𝑞% of cases

• also called conditional value at risk (CVaR) and expected tail loss

▷ Note that
• 𝐸𝑆𝑞 increases as 𝑞 increases

• 𝐸𝑆𝑞 is always greater than 𝑉𝑎𝑅𝑞 at the same 𝑞 level (for the same portfolio)

▷ Unlike VaR, expected shortfall is a coherent risk measure
• a risk measure ℛ is subadditive if ℛ(𝑋 + 𝑌) ≤ ℛ(𝑋) + ℛ(𝑌)

• the risk of two portfolios combined cannot exceed the risk of the two separate
portfolios added together (diversification does not increase risk)
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Estimating VaR

▷ Estimation is difficult because we are dealing with rare events
whose probability distribution is unknown

▷ Three main methods are used to estimate VaR:
1 historical bootstrap method

2 variance-covariance method

3 Monte Carlo simulation

▷ All are based on estimating volatility

▷ Applications of the constant expected return model which is
widely used in finance
• assumption: an asset’s return over time is independent and

identically normally distributed with a constant (time invariant)
mean and variance
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Understanding volatility
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Historical bootstrap method

▷ Hypothesis: history is representative of future activity

▷ Method: calculate empirical quantiles from a histogram of
daily returns

▷ 0.05 empirical quantile of daily returns is at -0.034:
• with 95% confidence, our worst daily loss will not exceed 3.4%

• 1 M€ investment: one-day 5% VaR is 0.034 × 1 M€ = 34 k€

• (note: the 0.05 quantile is the 5th percentile)

▷ 0.01 empirical quantile of daily returns is at -0.062:
• with 99% confidence, our worst daily loss will not exceed 6.2%

• 1 M€ investment: one-day 1% VaR is 0.062 × 1 M€ = 62 k€
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quantile(0.05): -0.034€

Download this content as a

Python notebook at

risk-engineering.org

15 / 41

https://risk-engineering.org/?src=pdfslide
https://risk-engineering.org/VaR/


Variance-covariance method

▷ Hypothesis: daily returns are normally distributed

▷ Method: analytic quantiles by curve fitting to historical data
• here: Student’s t distribution

▷ 0.05 analytic quantile is at -0.0384
• with 95% confidence, our worst daily loss will not exceed 3.84%

• 1 M€ investment: one-day 5% VaR is 0.0384 × 1 M€ = 38 k€

▷ 0.01 analytic quantile is at -0.0546
• with 99% confidence, our worst daily loss will not exceed 5.46%

• 1 M€ investment: one-day 1% VaR is 0.0546 × 1 M€ = 54 k€
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student t fit: 
μ=0.001, σ=0.017, df=4.185
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Monte Carlo simulation

▷ Method:
1 run many “trials” with random market conditions

2 calculate portfolio loss for each trial

3 use the aggregated trial data to establish a profile of the portfolio’s risk
characteristics

▷ Hypothesis: stock price evolution can be simulated by geometric
Brownian motion (gbm) with drift
• constant expected return

• constant volatility

• zero transaction costs

▷ gbm: a continuous-time stochastic process in which the logarithm of the
randomly varying quantity follows a Brownian motion
• stochastic process modeling a “random walk” or “white noise”

• 𝑊𝑡 − 𝑊𝑠 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑡 − 𝑠)

1997 “Nobel-like”

prize in economics:

Scholes
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Monte Carlo simulation: underlying hypothesis

▷ Applying the GBM “random walk” model means we are following a weak
form of the “efficient market hypothesis”
• all available public information is already incorporated in the current price

• the next price movement is conditionally independent of past price movements

▷ The strong form of the hypothesis says that current price incorporates
both public and private information
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Geometric Brownian motion

Δ𝑆
𝑆 = 𝜇Δ𝑡 + 𝜎𝜀√Δ𝑡

where

▷ S = stock price

▷ random variable 𝑙𝑜𝑔(𝑆𝑡/𝑆0) is normally distributed with mean = (𝜇 − 𝜎2/2)𝑡, variance = 𝜎2𝑡

drift (instantaneous rate of return on
a riskless asset)

volatility

follows a Normal(0, 1)
distribution

time step
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Monte Carlo simulation: 15 randomwalks
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With large number of
simulations, we can
estimate:

▷ mean final price

▷ Value at Risk

→ slides on Monte Carlo

methods at

risk-engineering.org
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Monte Carlo simulation: histogram of final price
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Start price: 10€

Mean final price: 10.505€

VaR(0.99): 0.409€q(0.99): 9.591€

Download the associated

Python notebook at

risk-engineering.org
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Note

The Black-Scholes model is elegant, but it does not perform
very well in practice:

▷ it is well known that stock prices jump on occasions
and do not always move in the smooth manner
predicted by the gbm model
• Black Tuesday 29 Oct 1929: drop of Dow Jones

Industrial Average (djia) of 12.8%
• Black Monday 19 Oct 1987: drop of djia of 22.6%

• Asian and Russian financial crisis of 1997–1998

• Dot-com bubble burst in 2001

• Crash of 2008–2009, Covid-19 in 2020

▷ stock prices also tend to have fatter tails than those
predicted by gbm

▷ more sophisticated modelling uses “jump-diffusion”
models

‘‘ If the efficient market
hypothesis were correct,
I’d be a bum in the street
with a tin cup.

– Warren Buffet

(Market capitalization of his
company Berkshire Hathaway:
US$328 billion)
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Stock market returns and “fat tails”

−3 −2 −1 0 1 2 3
Theoretical quantiles

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

O
rd

er
ed

 V
al

ue
s

Normal probability plot of MSFT daily returns in 2013

A probability plot shows how the
distribution of a sample compares with
the distribution of a reference probability
distribution by plotting their quantiles
against each other.

If distributions are similar, plot will follow
a line 𝑌 = 𝑋.

The reference probability distribution is
often the normal distribution.
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Stock market returns and “fat tails”
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Student probability plot of MSFT daily returns in 2013

Student’s t distribution tends to fit
stock returns better than a Gaussian
(in particular in the tails of the
distribution).

The distribution of a random variable
𝑋 is said to have a “fat tail” if

Pr(𝑋 > 𝑥) ∼ 𝑥−𝛼 as 𝑥 → ∞, 𝛼 > 0
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Diversification and portfolios

▷ Money managers try to reduce their risk exposure by diversifying their portfolio
of investments
• attempt to select stocks that have negative correlation: when one goes down, the other

goes up

• same ideas for pooling of risks across business lines and organizations

• degree of diversification benefit depends on the degree of dependence between pooled
risks

‘‘ Diversification benefits can be assessed by correlations between different risk categories.
A correlation of +100% means that two variables will fall and rise in lock-step; any
correlation below this indicates the potential for diversification benefits.

[Treasury and FSA, 2006]

▷ Area called “portfolio theory”
• developed for equities (stocks), but also applied to loans & credits
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Expected returns and risk

▷ Expected return for an equity 𝑖: 𝔼[𝑅𝑖] = 𝜇𝑖

• where 𝜇𝑖 = mean of return distribution for equity 𝑖

• difference between purchase and selling price

▷ More risk → higher expected return
• we assume investors are risk averse
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Expected returns and risk

Variance

Variance (denoted σ²) is a measure of the dispersion of a set of data points around their mean
value, computed by finding the probability-weighted average of squared deviations from the expected
value.

𝜎2
𝑋 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋) = 𝔼[(𝑋 − 𝔼[𝑋])2]

= 𝔼[(𝑋 − 𝜇)2]

=
𝑁

∑
𝑖=1

𝑝𝑖(𝑥𝑖 − 𝜇𝑋)2 for a discrete random variable

= 1
𝑁

𝑁
∑
𝑖=1

(𝑥𝑖 − 𝜇)2 for a set of 𝑁 equally likely variables

Variance measures the variability from an average (the volatility).

“Risk” in finance is standard deviation of returns for the equity, √𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑖)

𝜎𝑖 = √𝔼[(𝔼[𝑅𝑖]–𝑅𝑖)2]
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Expected return and risk: example

▷ Consider a portfolio of 10 k€ which is invested in equal parts in two
instruments:
• treasury bonds with an annual return of 6%

• a stock which has a 20% chance of losing half its value and an 80% chance of
increasing value by a quarter

▷ The expected return after one year is the mathematical expectation of the
return on the portfolio:
• expected final value of the bond: 1.06 × 5000 = 5300

• expected final value of the stock: 0.2 × 2500 + 0.8 × 6250 = 5500

• 𝔼(return) = 5400 + 5500 - 10000 = 900 (= 0.09, or 9%)

▷ The risk of this investment is the standard deviation of the return

𝜎 = √0.2 × ((5300 + 2500 − 10000) − 900)2 + 0.8 × ((5300 + 6250 − 10000) − 900)2

= 1503.3
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Value at Risk of a portfolio

▷ Remember that Var(𝑋 + 𝑌) = Var(𝑋) + Var(𝑌) + 2𝑐𝑜𝑣(𝑋, 𝑌)

▷ Variance of a two-stock portfolio:

𝜎2
𝐴+𝐵 = 𝜎2

𝐴 + 𝜎2
𝐵 + 2𝜎𝐴𝜎𝐵𝜌𝐴,𝐵

= (𝜎𝐴 + 𝜎𝐵)2 − 2𝜎𝐴𝜎𝐵 + 2𝜌𝐴,𝐵𝜎𝐴𝜎𝐵

where
• 𝜌𝐴,𝐵 = covariance (how much do 𝐴 and 𝐵 vary together?)

• 𝜎𝑖 = standard deviation (volatility) of equity 𝑖

▷ Portfolio VaR:
VaR𝐴,𝐵 = √(VaR𝐴 + VaR𝐵)2 − 2(1 − 𝜌𝐴,𝐵)VaR𝐴VaR𝐵

Diversification effect: unless the equities are perfectly correlated (𝜌𝐴,𝐵 = 1), the level of risk
of a portfolio is smaller than the weighted sum of the two component equities
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Negatively correlated portfolio reduces risk
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Note: fake data!

Old saying: “Don’t put all

your eggs in the same

basket”
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VaR of a three-asset portfolio

▷ VaR = √𝜎2
𝐴 + 𝜎2

𝐵 + 𝜎2
𝐶 + 2𝜌𝐴,𝐵 + 2𝜌𝐴,𝐶 + 2𝜌𝐵,𝐶

▷ Approach quickly becomes intractable using analytic methods…

Monte Carlo methods can work, assuming we can generate
random returns that are similar to those observed on the market

▷ including the dependencies between stocks…

31 / 41

https://risk-engineering.org/?src=pdfslide


VaR of a three-asset portfolio

▷ VaR = √𝜎2
𝐴 + 𝜎2

𝐵 + 𝜎2
𝐶 + 2𝜌𝐴,𝐵 + 2𝜌𝐴,𝐶 + 2𝜌𝐵,𝐶

▷ Approach quickly becomes intractable using analytic methods…

Monte Carlo methods can work, assuming we can generate
random returns that are similar to those observed on the market

▷ including the dependencies between stocks…

31 / 41

https://risk-engineering.org/?src=pdfslide


Example: correlation between stocks
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CAC vs DAX daily returns, 2005–2010

Correlation coefficient: 0.918

Market
opportunities for
large French &
German firms tend
to be strongly
correlated, so high
correlation between
CAC and DAX
indices
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Example: correlation between stocks
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Correlation coefficient: 0.356

Less market
correlation between
French & Australian
firms, so less index
correlation
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Example: correlation between stocks
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Correlation coefficient: 0.408

Less market
correlation between
French & Hong Kong
firms, so less index
correlation
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Correlations and risk: stock portfolios

stock A

st
o

ck
 B

both stocks
gain strongly

both stocks
lose strongly

“ordinary” days

both stocks
gain

both stocks
lose

asymmetric days:
one up, one down

asymmetric days:
one up, one down
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Simulating correlated random variables

▷ Let’s use the Monte Carlo method to estimate VaR for a portfolio
comprising CAC40 and DAX stocks

▷ We need to generate a large number of simulated daily returns for our
CAC40 & DAX portfolio

▷ We know how to generate daily returns for the CAC40 part of our
portfolio
• simulate random variables from a Student’s t distribution with the same mean

and standard deviation as the daily returns observed over the last few months
for the CAC40

▷ We can do likewise to generate daily returns for the DAX component

▷ If our portfolio is equally weighted in CAC40 and DAX, we could try to
add together these daily returns to obtain portfolio daily returns
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Simulating correlated random variables
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tμ = 0.000505

tσ = 0.008974

df = 2.768865
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tμ = 0.000864
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Fit of two Student t distributions to the CAC40 and DAX daily return distribution

Python: tdf, tmean, tsigma = scipy.stats.t.fit(returns)
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Monte Carlo sampling from these distributions

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10 CAC vs DAX returns (simulated, no correlation)

Problem: our sampling
from these random variables
doesn’t match our
observations

We need some way of
generating a sample that
respects the correlation
between the input variables!
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Continue with

The mathematical tool we will use to generate samples from
correlated random variables is called a copula.

To be continued in slides on Copula and multivariate dependencies
(available on risk-engineering.org)

For more free content on risk engineering,
visit risk-engineering.org
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Image

credits

▷ Cat stretching (slide 3): norsez via flic.kr/p/e8q1GE, CC BY-NC-ND
licence

▷ Brownian motion (slide 16), reproduced from Jean Baptiste Perrin,
“Mouvement brownien et réalité moléculaire”, Ann. de Chimie et de
Physique (VIII) 18, 5-114, 1909 (public domain)

For more free content on risk engineering,
visit risk-engineering.org
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Feedback welcome!

Was some of the content unclear? Which parts were most useful to
you? Your comments to feedback@risk-engineering.org
(email) or @LearnRiskEng (Twitter) will help us to improve these
materials. Thanks!

@LearnRiskEng

fb.me/RiskEngineering

This presentation is distributed under the terms of the
Creative Commons Attribution – Share Alike licence

For more free content on risk engineering,
visit risk-engineering.org
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