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Warmup. Before reading this material, we
suggest you consult the following associated
slides:

▷ Slides on Modelling correlations with
Python

▷ Slides on Estimating Value at Risk

Available from risk-engineering.org
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Dependencies and risk: stock portfolios
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“ordinary” days
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asymmetric days:
one up, one down

asymmetric days:
one up, one down
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Dependencies and risk: life insurance

▷ Correlation of deaths for life insurance companies
• marginal distributions: probabilities of time until death for each spouse

• joint distribution shows the probability of spouses dying in close succession

▷ Aim (actuarial studies): estimate the conditional probability when one
spouse dies, that the succeeding spouse will die shortly afterwards

▷ Common risk factors:
• common disaster (fatal accidents involving both spouses)

• common lifestyle

• “broken-heart syndrome”
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Dependencies and risk: bank loans
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▷ Correlation of default: what is the likelihood that if one
company defaults, another will default soon after?
• 𝑟 = 0: default events are independent

• perfect positive correlation (r=1): if one company defaults,
the other will automatically do the same

• perfect negative correlation: if one company defaults, the
other will certainly not

Example of correlated defaults

A bank lends money to two companies: a dairy farm and a
dairy. The farm has a 10% chance of going bust and the dairy a
5% chance. But if the farm does go under, the chances that the
dairy will follow will quickly rise above 5% if the farm was its
main milk supplier.

Poor estimation of these correlations

led to failure of LTCM hedge fund

(USA, 1998)
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Dependencies and risk: testing in semiconductor manufacturing

Datasheet specification, u
Test specification, t

fails test

passes test

bad in use
good in use

yield loss: fraction rejected by
test, regardless of use

overkill: rejected by test but
good in use

End Use Defect Level: bad in use 
as fraction of passes test

Performance during testing is

correlated with (but not exactly

equivalent to) performance in the

field

Source: Copula Methods in Manufacturing Test: A DRAM Case Study, C. Glenn Shirley & W. Robert Daasch
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Dependencies and risk: other applications

Modelling dependencies is an important and widespread issue in risk analysis:

▷ Civil engineering: reliability analysis of highway bridges

▷ Insurance industry: estimating exposure to systemic risks
• a hurricane causes deaths, property damage, vehicle damage, business

interruption…

▷ Medicine: failure of paired organs

▷ Note: often the dependency is more complicated than a simple linear
correlation…
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Copula

▷ Latin word that means “to fasten or fit”

▷ A bridge between marginal distributions and a joint distribution
• dependency between stocks (e.g. CAC40 & DAX)

• dependency between defaults on loans

• dependency between annual peak of a river and volume (hydrology)

▷ Widely used in quantitative finance & insurance

▷ Let’s look at plots of a few 2D copula functions to try to visualize their
impact
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Same copula, different marginals
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Another copula
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Copula representing perfect correlation
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Copula representing perfect negative correlation
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Copula representing independence
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Copula: definitions

▷ Copula functions are a tool to separate the specification of marginal
distributions and the dependence structure
• unlike most multivariate statistics, allow combination of different marginals

▷ Say two risks 𝐴 and 𝐵 have joint probability 𝐻(𝑋, 𝑌) and marginal
probabilities 𝐹𝑋 and 𝐹𝑌

• 𝐻(𝑋, 𝑌) = 𝐶(𝐹𝑋, 𝐹𝑌)

• 𝐶 is a copula function

▷ Characteristics of a copula:
• 𝐶(1, 1) = 1

• 𝐶(𝑥, 0) = 0

• 𝐶(0, 𝑦) = 0

• 𝐶(𝑥, 1) = 𝑥

• 𝐶(1, 𝑦) = 𝑦
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Gaussian copula, dimension 2, rho=0.8
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Gaussian copula, dimension 2, rho=-0.9
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Gaussian copula, dimension 2, rho=0
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Gaussian copula, dimension 3
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Student t copula, dimension 2, rho=0.8
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Gumbel copula, dimension 2, rho=0.8
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Clayton copula, dimension 2, rho=0.8
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Independence copula, 𝐶(𝑢, 𝑣) = 𝑢 × 𝑣
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Copula representing perfect positive dependence

𝐶(𝑢, 𝑣) = min(𝑢, 𝑣)
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Copula representing perfect negative dependence

𝐶(𝑢, 𝑣) = max(𝑢 + 𝑣 − 1, 0)
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Tail dependence

▷ Risk management is concerned with the tail of the distribution of losses

▷ Large losses in a portfolio are often caused by simultaneous large moves in several
components

▷ One interesting aspect of any copula is the probability it gives to simultaneous
extremes in several dimensions

▷ The lower tail dependence of 𝑋𝑖 and 𝑋𝑗 is defined as

𝜆𝑙 = lim
𝑢→0

Pr[𝑋𝑖 ≤ 𝐹−1
𝑖 (𝑢)|𝑋𝑗 ≤ 𝐹−1

𝑗 (𝑢)]

▷ Only depends on the copula, and is lim𝑢→0
1
𝑢 𝐶𝑖,𝑗(𝑢, 𝑢)

▷ Tail dependence is symmetric
• tail dependence of 𝑋𝑖 and 𝑋𝑗 is the same as that of 𝑋𝑗 and 𝑋𝑖

▷ Upper tail dependence 𝜆𝑢 is defined similarly
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Mathematical recap: joint probability distribution

▷ Joint probability distributions are defined in the form below:

𝑓 (𝑥, 𝑦) = Pr(𝑋 = 𝑥, 𝑌 = 𝑦)

representing the probability that events 𝑥 and 𝑦 occur at the
same time

▷ The Cumulative Distribution Function (cdf) for a joint
probability distribution is given by:

𝐹𝑋𝑌(𝑥, 𝑦) = Pr(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦)

▷ Note: examples here are bivariate, but principles are valid for
multivariate distributions
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Joint distribution — discrete case

𝑏1 𝑏2 𝑏3 … 𝑏𝑘

𝑎1 𝑝1,1 𝑝1,2 𝑝1,3 … 𝑝1,𝑘

𝑎2 𝑝2,1 𝑝2,2 𝑝2,3 … 𝑝2,𝑘

… … … … … …

… … … … … …

𝑎𝑚 𝑝𝑚,1 𝑝𝑚,2 𝑝𝑚,3 … 𝑝𝑚,𝑘

Pr(𝐴 = 𝑎𝑖 and 𝐵 = 𝑎𝑗) = 𝑝𝑖,𝑗
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Joint distribution — continuous case

▷ 𝑓𝑋𝑌 ∶ 𝑅𝑛 → 𝑅

▷ 𝑓𝑋𝑌 ≥ 0 ∀𝑣 ∈ 𝑅𝑛

▷ ∫∞
−∞ ∫∞

−∞ 𝑓𝑋𝑌(𝑥, 𝑦) = 1

▷ Pr(𝑣 ∈ 𝐵) = ∬
𝐵

𝑓𝑋𝑌

▷ Pr(𝑋 ≤ 𝑥) = 𝐹𝑋(𝑥) = ∫𝑥
−∞ 𝐹𝑋(𝑧)𝑑𝑧

▷ Pr(𝑌 ≤ 𝑦) = 𝐹𝑌(𝑦) = ∫𝑦
−∞ 𝐹𝑌(𝑧)𝑑𝑧

▷ Pr(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝐹𝑋𝑌(𝑥, 𝑦) =
∫𝑥

−∞ ∫𝑦
−∞ 𝑓𝑋𝑌(𝑤, 𝑧)𝑑𝑤 𝑑𝑧
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Bivariate gaussian distribution
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Marginal distributions — discrete case

𝑏1 𝑏2 𝑏3 … 𝑏𝑘

𝑎1 𝑝1,1 𝑝1,2 𝑝1,3 … 𝑝1,𝑘

𝑎2 𝑝2,1 𝑝2,2 𝑝2,3 … 𝑝2,𝑘

… … … … … …

… … … … … …

𝑎𝑚 𝑝𝑚,1 𝑝𝑚,2 𝑝𝑚,3 … 𝑝𝑚,𝑘

𝑝𝑋(𝑥) = Pr(𝑋 = 𝑥) = ∑
𝑦

𝑝(𝑥, 𝑦)

𝑝𝑌(𝑦) = Pr(𝑌 = 𝑦) = ∑
𝑥

𝑝(𝑥, 𝑦)
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Marginal distributions — discrete case

𝑏1 𝑏2 𝑏3 … 𝑏𝑘

𝑎1 𝑝1,1 𝑝1,2 𝑝1,3 … 𝑝1,𝑘

𝑎2 𝑝2,1 𝑝2,2 𝑝2,3 … 𝑝2,𝑘

… … … … … …

… … … … … …

𝑎𝑚 𝑝𝑚,1 𝑝𝑚,2 𝑝𝑚,3 … 𝑝𝑚,𝑘

𝑝𝑋(𝑥) = Pr(𝑋 = 𝑥) = ∑
𝑦

𝑝(𝑥, 𝑦)

𝑝𝑌(𝑦) = Pr(𝑌 = 𝑦) = ∑
𝑥

𝑝(𝑥, 𝑦)
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Marginal distributions — continuous case

𝑓𝑋(𝑥) = ∫
∞

−∞
𝑓 (𝑥, 𝑦)𝑑𝑦

𝑓𝑌(𝑦) = ∫
∞

−∞
𝑓 (𝑥, 𝑦)𝑑𝑥
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Sklar’s theorem

For every joint probability distribution 𝐹𝑋𝑌 there is a copula 𝐶 such that:

𝐹𝑋𝑌(𝑥, 𝑦) = C ( 𝐹𝑋 (𝑥), 𝐹𝑌 (𝑦))

copula function

marginal distribution of 𝑋 marginal distribution of 𝑌

If 𝐹𝑋𝑌 is continuous then 𝐶 is unique.
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Copula: summary

▷ The copula captures the dependency between the random variables

▷ The marginals capture individual distributions

▷ Sklar’s theorem “glues” them together

▷ “Shape” and degree of joint tail dependence are properties of the copula
• they are independent from the marginal distributions (this is the real practical use for copulas)
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Understanding the copula function

𝑋

𝑌

space of our
“real variables”

𝑥

𝑦

0

1
𝑡

𝐹𝑋𝑌(𝑥, 𝑦) = 𝑡

joint distribution function

𝐹𝑋𝑌(𝑥, 𝑦) = 𝑡 is the probability that
𝑋 < 𝑥 and 𝑌 < 𝑦

𝐹𝑋(𝑥)

𝐹𝑌(𝑦)
(x, y)

We can use the marginal CDFs
to map from (𝑥, 𝑦) to a point (𝑢, 𝑣)
on the unit square.

1

0
0 1

(u, v)𝐹−1
𝑋 (·)

𝐹−1
𝑌 (·)

(𝐹−1
𝑋 (𝑢), 𝐹−1

𝑌 (𝑣))

We can use the marginal inverse
CDFs to map from (𝑢, 𝑣) to
(𝐹−1

𝑋 (𝑢), 𝐹−1
𝑌 (𝑣)).

(𝐹−1
𝑋 (𝑢), 𝐹−1

𝑌 (𝑣))

0

1
𝑡 = 𝐹𝑋𝑌 (𝐹−1

𝑋 (𝑢), 𝐹−1
𝑌 (𝑣))

𝐹𝑋𝑌(·, ·)

joint distribution function

Then map from (𝐹−1
𝑋 (𝑢), 𝐹−1

𝑌 (𝑣)) to
[0, 1] using the joint distribution
function.

0

1
𝑡 = 𝐶(𝑢, 𝑣)

1

0
0 1

(u, v)

𝐹𝑋𝑌

(𝐹−1
𝑋 , 𝐹−1

𝑌 ) 𝐶

𝐶(𝑢, 𝑣) = 𝐹𝑋𝑌 (𝐹−1
𝑋 (𝑢), 𝐹−1

𝑌 (𝑣))

The copula function lets us map
directly from the unit square to
the joint distribution.

It lets us express the joint
probability as a function of
the marginal distributions.

𝐹𝑋𝑌(𝑥, 𝑦) = 𝐶 (𝐹𝑋(𝑥), 𝐹𝑌(𝑦))
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Understanding the copula function
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Multivariate simulation…

𝑋

𝑌

1

0
0 1

We generate random points on
[0, 1]² using the copula function
random generator.

𝐹−1
𝑋 (𝑥)

𝐹−1
𝑌 (𝑦)

(x, y)

We use the inverse CDFs to
generate red points in the space
of our real variables.

The joint distribution of the red
points has marginals 𝐹𝑋 and 𝐹𝑌,
with the required dependency
structure.
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Simulating dependent random vectors

Various situations in practice where we might wish to simulate
dependent random vectors (𝑋1, …, 𝑋𝑛)𝑡:

▷ finance: simulate the future development of the values of assets
in a portfolio, where we know these assets to be dependent in
some way

▷ insurance: “multi-line products” where payouts are triggered
by the occurrence of losses in one or more dependent business
lines, and wish to simulate typical losses

▷ environmental modelling: measures such as wind speed,
temperature and atmospheric pressure are correlated
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Simulation of correlated stock returns

(Coming back to our estimation of VaR of a CAC40/DAX stock portfolio)

−0.10 −0.05 0.00 0.05 0.10
−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04
CAC40 and DAX stock returns, dependency simulated using copula

Simulation using the following parameters:

▷ CAC: student-t distribution with tμ =
0.000505, tσ = 0.008974, df = 2.768865

▷ DAX: student-t distribution with tμ =
0.000864, tσ = 0.008783, df = 2.730707

▷ dependency: t copula with ρ=0.9413, df =
2.8694

Assumption: the

correlation structure does

not change with time
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VaR of a CAC-DAX portfolio

▷ 10 M€ portfolio, equally weighted
between CAC and DAX indexes
• CAC: daily returns with Student’s t with

tμ = 0.000505, tσ = 0.008974, df = 2.768865

• DAX: daily returns with Student’s t with
tμ = 0.000864, tσ = 0.008783, df = 2.730707

• Dependency between CAC and DAX
indexes modelled using a Student t copula
with ρ=0.9413, df=2.8694

▷ Monte Carlo simulation of portfolio
returns

▷ 30-day VaR(0.99) is 1.95 M€

0 2 4 6 8 10 12 14 16 18
0.0

0.1

0.2

0.3

0.4

0.5

0.6 Histogram of CAC/DAX portfolio value after 30 days

Initial portfolio value: 10.0

Mean final portfolio value: 10.23

30-day VaR(0.99): 1.954

Download the associated

Python notebook at

risk-engineering.org
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VaR of a CAC-AORD portfolio

▷ 10 M€ portfolio, equally weighted between
CAC and AORD indexes
• CAC: daily returns with Student’s t with tμ =

0.000505, tσ = 0.008974, df = 2.768865

• AORD: daily returns with Student’s t with tμ =
0.0007309, tσ = 0.0082751, df = 3.1973

• Dependency between CAC and AORD indexes
modelled using a Student t copula with
ρ=0.3101, df=2.795

▷ Monte Carlo simulation of portfolio returns

▷ 30-day VaR(0.99) is 1.37 M€

▷ Lower than for CAC-DAX portfolio
because of lower degree of dependency!

7 8 9 10 11 12 13 14 15 16
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Histogram of CAC/AORD portfolio value after 30 days

Initial portfolio value: 10.0

Mean final portfolio value: 10.20

30-day VaR(0.99): 1.375
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VaR of a CAC-HSI portfolio

▷ 10 M€ portfolio, equally weighted between
CAC and HSI indexes
• CAC: daily returns with Student’s t with tμ =

0.000505, tσ = 0.008974, df = 2.768865

• HSI: daily returns with Student’s t with tμ =
0.000988, tσ = 0.01032, df = 2.269018

• Dependency between CAC and DAX indexes
modelled using a Student t copula with
ρ=0.35695, df=2.542247

▷ Monte Carlo simulation of portfolio returns

▷ 30-day VaR(0.99) is 2.23 M€

▷ Higher than for CAC-DAX portfolio
despite lower degree of dependency (why?)

2 4 6 8 10 12 14 16 18
0.0

0.1

0.2

0.3

0.4

0.5 Histogram of CAC/HSI portfolio value after 30 days

Initial portfolio value: 10.0

Mean final portfolio value: 10.25

30-day VaR(0.99): 2.227
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Further reading

▷ Teaching material by Prof. Paul Embrecht from ETH Zurich, an important
researcher in the use of copula techniques in finance: qrmtutorial.org

▷ Article ‘The Formula That Killed Wall Street’? The Gaussian Copula and the
Material Cultures of Modelling by Donald MacKenzie and Taylor Spears

For more free content on risk engineering,
visit risk-engineering.org
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Feedback welcome!

Was some of the content unclear? Which parts were most useful to
you? Your comments to feedback@risk-engineering.org
(email) or @LearnRiskEng (Twitter) will help us to improve these
materials. Thanks!

@LearnRiskEng

fb.me/RiskEngineering

This presentation is distributed under the terms of the
Creative Commons Attribution – Share Alike licence

For more free content on risk engineering,
visit risk-engineering.org
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