

Case study: estimating height of a dike

Eric Marsden

<eric.marsden@risk-engineering.org>

Dikes and flooding

Source: flickr.com/photos/william_veerbeek/7703915786/, CC BY-NC-SA licence

Dikes and flooding

Flood protection equipment in New Orleans after passage of hurricane Katrina

Dikes and flooding

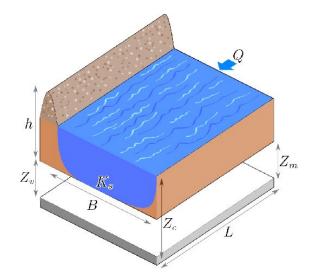
Source: flickr.com/photos/tomlawrence/621868082, CC BY-NC-SA licence

Illustration of dike failure

Modelling flood risk

- $\,\triangleright\,\,$ In reality, dike design is a function of many parameters:
 - dike geometries and materials
 - hydrological, hydraulic and topographic data
 - wind speed and directions
 - linked wave effects
 - changing roughness due to seasonal vegetation
 - effect of sediment transport on flow resistance
- ▷ In this work, **very simplified equations** are used
 - main aim is to illustrate different risk assessment approaches

Model parameters



Source: B. looss, P. Lemaître, A review on global sensitivity analysis methods, 2015, hal-00975701

The system model

The maximal water level of the river (Z_c) is given as a function of several parameters, some of which are uncertain:

$$Z_{c} = \left(\frac{Q}{(K_{s} \times B \times \sqrt{(Z_{m} - Z_{v})/L})}\right)^{3/5}$$

uncertainty
vel (variable of interest)

where

- \triangleright *Z_c* is flood level (variable of interest)
- $\triangleright Z_m$ and Z_v are level of the riverbed, upstream and downstream (uncertain)
- $\triangleright Q$ is maximal annual flowrate of the river (uncertain)
- \triangleright K_s is Strickler's roughness coefficient (uncertain)
- \triangleright *B* and *L* are the width and length of the river cross-section (certain)

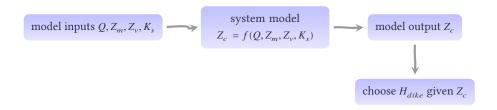
Input parameters

Input	Description	Unit	Probability distribution
Q	Maximal annual flowrate	m³/s	Fit to observations
K _s	Strickler coefficient	-	Truncated normal $\mathcal{N}(30, 8)$ on [15, + ∞ [
Z_{ν}	River downstream level	m	Triangular $\mathcal{T}(49, 50, 51)$
Z_m	River upstream level	m	Triangular $\mathcal{T}(54, 55, 56)$
L	Length of the river stretch	m	5000
В	River width	m	300

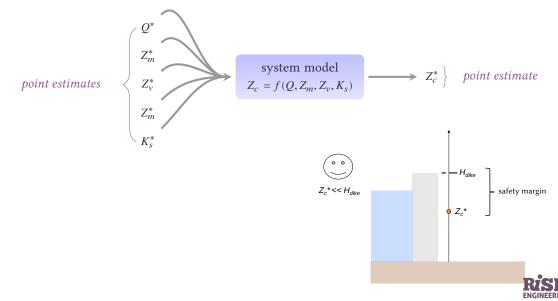
You have the following measurements of the maximum flowrate in the river from the past 20 years (observations are expressed in m^3/s):

1114, 773, 570, 1069, 1340, 2653, 2956, 892, 701, 1169, 525, 683, 2102, 1060, 296, 2107, 1720, 849, 1361, 2024

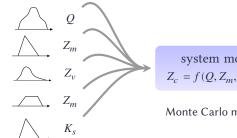
System model and risk



Deterministic approach to risk assessment



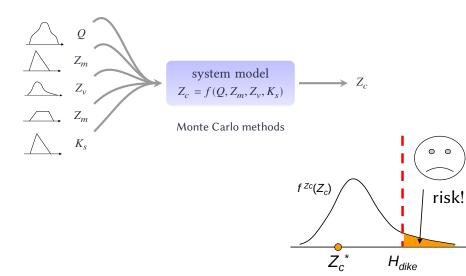
Probabilistic approach to risk assessment



system model Z_c ≻ $Z_c = f(Q, Z_m, Z_v, K_s)$

Monte Carlo methods

Probabilistic approach to risk assessment



 Z_c

Task

- ▷ Fit a lognormal distribution to the measurements of maximal flowrate
 - check that a lognormal distribution fits this data well, using a probability plot
- Calculate the average height of the river by making a deterministic calculation
 - use median values for each uncertain parameter
- Calculate the maximum ("worst case") height of the river using a deterministic approach
- Produce a histogram of possible water levels, given the input uncertainty, using a Monte Carlo approach
- $\,\triangleright\,$ Estimate the 100-year flood level for this river
 - note: specialists use the term "0.01 annual exceedance probability" flood, meaning a flood that has a 1% chance of happening in any given year

Hints

- > To fit a lognormal distribution to data, use shape, loc, scale = scipy.stats.lognorm.fit(obs)
- > A probability plot can be drawn with scipy.stats.probplot(obs, dist=scipy.stats.lognorm(shape,loc,scale), plot=plt.figure().add_subplot(111))
- $\,\triangleright\,$ To obtain a random variate from a probability distribution, use method rvs()
- D To obtain a random number from a triangular probability distribution, use numpy.random.triangular(min, centre, max)
- A left-truncated probability distribution can be obtained using (left truncation at 15) max(15, random_variate)
- ▷ The square root of *x* is given by numpy.sqrt(x)
- > Plot a histogram with plt.hist(obs) (first say import matplotlib.pyplot as plt)

