ENGINEERING

Economic viewpoint on risk transfer

Eric Marsden
eric.marsden@risk-engineering.org

How much risk should my organization take up?

Learning objectives

1 Understand different methods for transferring the financial component of risk

2 Understand concepts of expected value, expected utility and risk aversion
3. Know how to calculate the value of insurance (risk premium)

Which do you prefer?

Option B
$1 \emptyset \emptyset \emptyset €$ for sure

Which do you prefer?

Option A
Option B
$1 \emptyset \emptyset \emptyset €$ for sure

$$
\mathbb{E}(A)=1000 €
$$

$$
\mathbb{E}(B)=\frac{1}{2} \times 3000 €+\frac{1}{2} \times 0=1500 €
$$

Which do you prefer?

Option A
Option B

$$
\mathbb{E}(A)=1000 €
$$

$$
\mathbb{E}(B)=\frac{1}{2} \times 3000 €+\frac{1}{2} \times 0=1500 €
$$

When comparing two gambles, a reasonable start is to compare their expected value

Expected value

\triangleright Expected value of a gamble: the value of each possible outcome times the probability of that outcome

$$
\mathbb{E}(\text { situation })=\sum_{\text {outcomes } i} \operatorname{Pr}(i) \times W(i)
$$

\triangleright Interpretation: the amount that I would earn on average if the gamble were repeated many times

- if all probabilities are equal, it's the average value
\triangleright For a binary choice between A and B :

$$
\mathbb{E}(W)=\operatorname{Pr}(A) \times W_{A}+(1-\operatorname{Pr}(A)) \times W_{B}
$$

wealth if outcome A occurs

The expected value of betting $1 €$ on black 13 in American roulette (which has 38 pockets numbered 1 to 36 plus o plus oo, and a payout for a single winning number of 35 to one) is

$$
35 € \times \frac{1}{38}+-1 € \times \frac{37}{38}=-0.0526 €
$$

\rightarrow Each time you place a bet in the roulette table, you should expect to lose 5.26% of your bet

Note: initial bet is returned as well as $35 €$ for each euro bet

Finance: risk as standard deviation of expected value

\triangleright Risk in finance (portfolio risk): anticipated variability of the value of my portfolio
\triangleright Standard deviation of the expected value of the return on my portfolio

- return on an investment = next value - present value
\triangleright In general, riskier assets have a higher return
\triangleright A portfolio manager can reduce risk by diversifying assets

Diversification: example

\triangleright Diversification = reducing risk by allocating resources to different activities whose outcomes are not closely related
\triangleright Example: company selling air conditioners and heaters
\triangleright Assume equiprobability of hot and cold weather

Weather	Hot	Cold
AC	$3 \emptyset \mathrm{k} €$	$12 \mathrm{k} €$
Heaters	$12 \mathrm{k} €$	$3 \emptyset \mathrm{k} €$

Expected profit as a function of weather and type of equipment sold

Diversification: example

\triangleright Diversification = reducing risk by allocating resources to different activities whose outcomes are not closely related
\triangleright Example: company selling air conditioners and heaters
\triangleright Assume equiprobability of hot and cold weather
\triangleright If company sells only AC

- $\mathbb{E}($ profit $)=21 \mathrm{k} €$
- $\sigma($ profit $)=9 \mathrm{k} €$
\triangleright If company sells only heaters
- $\mathbb{E}($ profit $)=21 \mathrm{k} €$
- $\sigma($ profit $)=9 k €$
\triangleright If company sells both
- $\mathbb{E}($ profit $)=21 \mathrm{k} €$

Weather	Hot	Cold
AC	$30 \mathrm{k} €$	$12 \mathrm{k} €$
Heaters	$12 \mathrm{k} €$	$30 \mathrm{k} €$

Expected profit as a function of weather and type of equipment sold

- $\sigma($ profit $)=0 €$
\triangleright Conclusion: company should sell both to reduce risk

The Saint Petersberg game

\triangleright You flip a coin repeatedly until a tail first appears

- the pot starts at $1 €$ and doubles every time a head appears
- you win whatever is in the pot the first time you throw tails and the game ends
\triangleright For example:
- T (tail on the first toss): win $1 €$
- H T (tail on the second toss): win $2 €$
- H H T: win $4 €$
- H H H T: win $8 €$
\triangleright Which would you prefer?
A $10 €$ for sure
B the right to play the St. Petersburg game

The Saint Petersberg game

\triangleright What is the expected value of the St. Petersburg game?

The Saint Petersberg game

\triangleright What is the expected value of the St. Petersburg game?
\triangleright The probability of throwing a tail on a given round:

- $1^{\text {st }}$ round: $\operatorname{Pr}($ Tails $)=\frac{1}{2}$
- $2^{\text {nd }}$ round: $\operatorname{Pr}($ Heads $) \times \operatorname{Pr}($ Tails $)=\frac{1}{4}$
- $3^{\text {rd }}$ round: $\operatorname{Pr}($ Heads $) \times \operatorname{Pr}($ Heads $) \times \operatorname{Pr}($ Tails $)=\frac{1}{8}$
- $k^{\text {th }}$ round: $\frac{1}{2 k}$
\triangleright How much can you expect to win on average?
- with probability $1 / 2$ you win $1 €, 1 / 4$ you win $2 €, 1 / 8$ you win $4 €, 1 / 16$ you win $8 € \ldots$
- $\mathbb{E}($ win $)=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\ldots=\infty$

The Saint Petersberg game

\triangleright Expected value of the game is infinite, and yet few people would be willing to pay more than $20 €$ to play

- "the St. Petersburg Paradox"
\triangleright Bernoulli (1738):
- the "value" of a gamble is not its monetary value
- people attach some subjective value, or utility, to monetary outcomes
\triangleright Bernoulli's suggestion: people do not seek to maximize expected values, but instead maximize expected utility

- marginal utility declines as wealth increases (poor people value increments in wealth more than rich people do)
- an individual is not necessarily twice as happy getting $200 €$ compared to $100 €$
- people are "risk averse"

Utility in classical microeconomics

\triangleright Utility: measure of goal attainment or want satisfaction

- $U(x)=$ utility function for the $\operatorname{good} x$
\triangleright Utility functions are monotonically increasing: more is preferred to less
- $U^{\prime}(x)>0$
\triangleright Marginal utility of x : the change in utility resulting from a 1 unit change in x
- $M U(x) \stackrel{\text { def }}{=} \frac{\Delta U(x)}{\Delta x}$
\triangleright Principle of diminishing marginal utility
- each successive unit of a good yields less utility than the one before it

Expected utility

\triangleright Expected value is the probability weighted average of the monetary value
\triangleright Expected utility is the probability weighted average of the utility from the potential monetary values
$\triangleright \mathbb{E}(U)=\sum_{\text {outcomes }} \operatorname{Pr}\left(\right.$ outcome $\left._{i}\right) \times U\left(\right.$ outcome $\left._{i}\right)$
$\triangleright U$ is the person's von Neumann-Morgenstern utility function

Terminology: risk and uncertainty

Future states are not well known or delimited.

Radical uncertainty

Uncertainty

Possible future states are known.

Probability of each possibility is not well-known.

Expected utility hypothesis

\triangleright People's preferences can be represented by a function U

- where $U(A)>U(B)$ iff $A>B(A$ is preferred to $B)$
$\triangleright U$ is a way of modeling people's behaviour when faced with risk

The expected utility framework is useful for reasoning about behaviour in situations of risk, but is not a full explanation. The economist Maurice Allais showed that one of the axioms of EU, independence (two gambles mixed with a third one maintain the same preference order as when the two are presented independently of the third one), does not model real behaviour. Prospect theory is a more recent theory which models a wider range of real behaviour.

$14 / 24$

Risk aversion

\qquad Risk aversion (psychology \& economics)
Reluctance of a person to accept a gamble with an uncertain payoff rather than another gamble with a more certain, but possibly lower, expected payoff.
\triangleright I have $10 €$. Suppose I can play a gamble with 50% chance of winning $5 €$, and 50% chance of losing $5 €$.
\triangleright If I refuse to play:

- Expected value of wealth =
- Expected utility =
\triangleright If I play:
- Expected value of wealth $=$
- Expected utility =

Risk aversion

\qquad Risk aversion (psychology \& economics)
Reluctance of a person to accept a gamble with an uncertain payoff rather than another gamble with a more certain, but possibly lower, expected payoff.
\triangleright I have $10 €$. Suppose I can play a gamble with 50% chance of winning $5 €$, and 50% chance of losing $5 €$.
\triangleright If I refuse to play:

- Expected value of wealth $=10 €$
- Expected utility =
\triangleright If I play:
- Expected value of wealth $=$
- Expected utility =

Risk aversion

\qquad Risk aversion (psychology \& economics)
Reluctance of a person to accept a gamble with an uncertain payoff rather than another gamble with a more certain, but possibly lower, expected payoff.
\triangleright I have $10 €$. Suppose I can play a gamble with 50% chance of winning $5 €$, and 50% chance of losing $5 €$.
\triangleright If I refuse to play:

- Expected value of wealth $=10 €$
- Expected utility $=U(10 €)$
\triangleright If I play:
- Expected value of wealth $=$
- Expected utility =

Risk aversion

\qquad Risk aversion (psychology \& economics)
Reluctance of a person to accept a gamble with an uncertain payoff rather than another gamble with a more certain, but possibly lower, expected payoff.
\triangleright I have $10 €$. Suppose I can play a gamble with 50% chance of winning $5 €$, and 50% chance of losing $5 €$.
\triangleright If I refuse to play:

- Expected value of wealth $=10 €$
- Expected utility $=U(10 €)$
\triangleright If I play:
- Expected value of wealth $=10 €$
- Expected utility =

Risk aversion

__ Risk aversion (psychology \& economics)
Reluctance of a person to accept a gamble with an uncertain payoff rather than another gamble with a more certain, but possibly lower, expected payoff.
\triangleright I have $10 €$. Suppose I can play a gamble with 50% chance of winning $5 €$, and 50% chance of losing $5 €$.
\triangleright If I refuse to play:

- Expected value of wealth $=10 €$
- Expected utility $=U(10 €)$
\triangleright If I play:
- Expected value of wealth $=10 €$
- Expected utility $=0.5 U(15 €)+0.5 U(5 €)$

ENGINEERING

Risk aversion and utility function

Play: $E U=0.5 U(5 €)+0.5 U(15 €)$

Risk aversion and utility function

Play: $E U=0.5 U(5 €)+0.5 U(15 €)$

Risk aversion and utility function

Play: $E U=0.5 U(5 €)+0.5 U(15 €)$

$16 / 24$

Risk aversion and utility function

Play: $E U=0.5 U(5 €)+0.5 U(15 €)$

Risk aversion and utility function

Don't play: $E U=U(10 €)$

Risk aversion and utility function

If I am risk averse, the utility of gambling is lower than the utility of the sure thing: my utility function is concave.

Attitudes to risk

\triangleright Risk attitudes and fair gambles:

- A risk averse person will never accept a fair gamble

- A risk loving person will always accept a fair gamble
- A risk neutral person will be indifferent towards a fair gamble
\triangleright Given the choice between earning the same amount of money through a gamble or through certainty,
- the risk averse person will opt for certainty
- the risk loving person will opt for the gamble
- the risk neutral person will be indifferent
\triangleright Note: in reality, individual risk attitudes will depend on the context, on the type of risk, etc.

ENGINEERING

Certainty equivalent value

\triangleright The certainty equivalent value is the sum of money for which an individual would be indifferent between receiving that sum and taking the gamble
\triangleright The certainty equivalent value of a gamble is less than the expected value of a gamble for risk-averse consumers
\triangleright The risk premium is the difference between the expected payoff and the certainty equivalent

- this is the "cost of risk": the amount of money an individual would be willing to pay to avoid risk
- risk premium = value of insurance

Risk aversion and insurance

\triangleright Going without insurance generally has a higher expected value than going with insurance, but the risk is much greater without insurance

- in roulette, you take a risk by playing
- in insurance, you pay a company to take a risk for you
\triangleright A risk averse person will pay more than the expected value of a game that lets him or her avoid a risk
- suppose you face a $\frac{1}{100}$ chance of losing $10 \mathrm{k} €$
- "actuarially fair" value for insurance (expected value): $100 €$
- risk averse: you would pay more than $100 €$ for an insurance policy that would reimburse you for that $10 \mathrm{k} €$ loss, if it happens

Insurance companies

\triangleright Suppose there are many people like you, and you'd each be willing to pay $110 €$ to avoid that risk of losing $10 \mathrm{k} €$

- you join together to form a mutual insurance company
- each member pays $110 €$
- anyone who is unlucky and loses is reimbursed tok $€$
- the insurance company probably comes out ahead
- the more participants in your mutual insurance company, the more likely it is that you'll have money left over for administrative costs and profit
\triangleright How can an insurance company assume all these risks?
- isn't it risk averse, too?
\triangleright The insurance company can do what an individual can't
- play the game many times and benefit from the law of large numbers
- the larger an insurance company is, the better it can do this

20/24

Aside: insurance and moral hazard

\triangleright Insurance companies generally don't offer full insurance
\triangleright They use mechanisms like a deductible to make the insured cover a certain proportion (or fixed threshold) of the loss

- Example: you must pay the first $600 €$ of any damage to your car, and the insurance company pays the remaining damage
\triangleright Avoids "moral hazard": insurance buyer retains an incentive to exercise care to avoid loss

ENGINEERING

Willingness to pay for insurance

\triangleright Consider a person with a current wealth of $100 \mathrm{k} €$ who faces a 25% chance of losing her automobile, which is worth $20 \mathrm{k} €$

- assume that her utility function is $U(x)=\log (x)$
\triangleright The person's expected utility

$$
\begin{aligned}
\mathbb{E}(U) & =0.75 U(100 k)+0.25 U(80 k) \\
& =0.75 \log (100 k)+0.25 \log (80 k) \\
& =11.45
\end{aligned}
$$

\triangleright The individual will likely be willing to pay more than $5 \mathrm{k} €$ to avoid the gamble. How much will she pay for insurance?

$$
\begin{aligned}
\mathbb{E}(U) & =U(100 k-y)=\log (100 k-y)=11.45714 \\
100 k-y & =e^{11.45714} \\
y & =5426
\end{aligned}
$$

\triangleright The maximum she is willing to pay is $5426 €$

- her risk premium (the insurance company's expected profit) $=426 €$

Further reading

\triangleright Quantum Microeconomics is an opensource online textbook on introductory and intermediate microeconomics
\triangleright Introduction to Economic Analysis is an opensource textbook on microeconomics
\triangleright The report Risk attitude \& economics introduces standard and behavioral economic theories of risk and uncertainty to non-economists. Freely available from
foncsi.org/en/publications/collections/viewpoints/risk-attitude-economics

[^0]
Feedback welcome!

Was some of the content unclear? Which parts were most useful to you? Your comments to feedback@risk-engineering.org (email) or @LearnRiskEng (Twitter) will help us to improve these materials. Thanks!

OPEN
ACCESS

This presentation is distributed under the terms of the Creative Commons Attribution - Share Alike licence
\& fb.me/RiskEngineering

For more free content on risk engineering, visit risk-engineering.org

[^0]: For more free content on risk engineering,
 visit risk-engineering.org

