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Some individuals use statistics as the drunken man uses
lamp posts: for support rather than for illumination.

– attributed to Andrew Lang
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Regression analysis
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▷ Linear regression analysis means “fitting a straight line to data”
• also called linear modelling

▷ It’s a widely used technique to help model and understand
real-world phenomena
• easy to use

• easy to understand intuitively

▷ Allows prediction
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Regression analysis

▷ A regression problem is composed of
• an outcome or response variable 𝑌

• a number of risk factors or predictor variables 𝑋𝑖 that affect 𝑌
• also called explanatory variables, or features in the machine learning community

• a question about 𝑌, such as How to predict 𝑌 under different conditions?

▷ 𝑌 is sometimes called the dependent variable and 𝑋𝑖 the independent
variables
• not the same meaning as statistical independence

• experimental setting where the 𝑋𝑖 variables can be modified and changes in 𝑌
can be observed
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Regression analysis: objectives

We want to estimate 𝑌 at some specific
values of 𝑋𝑖

Prediction

We want to learn about the relationship
between 𝑌 and 𝑋𝑖, such as the
combination of predictor variables which
has the most effect on 𝑌

Model inference
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Univariate linear regression

(when all you have is a single predictor variable)
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Linear regression

▷ Linear regression: one of the simplest and most commonly used
statistical modeling techniques

▷ Makes strong assumptions about the relationship between the
predictor variables (𝑋𝑖) and the response (𝑌)
• (a linear relationship, a straight line when plotted)

• only valid for continuous outcome variables (not applicable to
category outcomes such as success/failure)

𝑦 = 𝛽0 + 𝛽1 × 𝑥 + error

intercept slope

outcome
variable

predictor
variable
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“Fitting a line

through data”
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Linear regression

▷ Assumption: 𝑦 = 𝛽0 + 𝛽1 × 𝑥 + error

▷ Our task: estimate 𝛽0 and 𝛽1 based on the available data

▷ Resulting model is ̂𝑦 = ̂𝛽0 + ̂𝛽1 × 𝑥
• the “hats” on the variables represent the fact that they are
estimated from the available data

• ̂𝑦 is read as “the estimator for 𝑦”

▷ 𝛽0 and 𝛽1 are called the model parameters or coefficients

▷ Objective: minimize the error, the difference between our
observations and the predictions made by our linear model
• minimize the length of the red lines in the figure to the right (called

the “residuals”)
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Ordinary Least Squares regression

▷ Ordinary Least-Squares (ols) regression: a
method for selecting the model parameters
• β₀ and β₁ are chosen to minimize the square of the
distance between the predicted values and the
actual values

• equivalent to minimizing the size of the red
rectangles in the figure to the right

▷ An application of a quadratic loss function
• in statistics and optimization theory, a loss function,

or cost function, maps from an observation or event
to a number that represents some form of “cost”
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Simple linear regression: example

▷ The British Doctors’ Study followed the health of a large number of
physicians in the uk over the period 1951–2001

▷ Provided conclusive evidence of linkage between smoking and lung
cancer, myocardial infarction, respiratory disease and other illnesses

▷ Provides data on annual mortality for a variety of diseases at four levels
of cigarette smoking:
1 never smoked

2 1-14 per day

3 15-24 per day

4 > 25 per day

More information: ctsu.ox.ac.uk/research/british-doctors-study
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Simple linear regression: the data

cigarettes smoked
(per day)

CVD mortality
(per 100 000 men per year)

lung cancer mortality
(per 100 000 men per year)

0 572 14

10 (actually 1-14) 802 105

20 (actually 15-24) 892 208

30 (actually >24) 1025 355

CVD: cardiovascular dise
ase

Source: British Doctors’ Study
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Simple linear regression: plots
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Deaths for different smoking intensities

import pandas
import matplotlib.pyplot as plt

data = pandas.DataFrame({"cigarettes": [0,10,20,30],
"CVD": [572,802,892,1025],
"lung": [14,105,208,355]});

data.plot("cigarettes", "CVD", kind="scatter")
plt.title("Deaths for different smoking intensities")
plt.xlabel("Cigarettes smoked per day")
plt.ylabel("CVD deaths")

Quite tempting to conclude that

cardiovascular disease d
eaths

increase linearly with cigarette

consumption…
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Aside: beware assumptions of causality

1964: the US Surgeon General issues a
report claiming that cigarette
smoking causes lung cancer, based
mostly on correlation data similar to
the previous slide.

However, correlation is not sufficient
to demonstrate causality. There might
be some hidden genetic factor that
causes both lung cancer and desire for
nicotine.

smoking lung
cancer

hidden
factor?
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Beware assumptions of causality

▷ To demonstrate the causality, you need a randomized controlled
experiment

▷ Assume we have the power to force people to smoke or not smoke
• and ignore moral issues for now!

▷ Take a large group of people and divide them into two groups
• one group is obliged to smoke

• other group not allowed to smoke (the “control” group)

▷ Observe whether smoker group develops more lung cancer than the
control group

▷ We have eliminated any possible hidden factor causing both smoking and
lung cancer

▷ More information: read about design of experiments
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Fitting a linear model in Python

▷ In these examples, we use the statsmodels library for statistics in
Python
• other possibility: the scikit-learn library for machine learning

▷ We use the formula interface to ols regression, in
statsmodels.formula.api

▷ Formulas are written outcome ~ observation
• meaning “build a linear model that predicts variable outcome as a function of

input data on variable observation”
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Fitting a linear model
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CVD deaths for different smoking intensities import numpy, pandas

import matplotlib.pyplot as plt

import statsmodels.formula.api as smf

df = pandas.DataFrame({"cigarettes": [0,10,20,30],

"CVD": [572,802,892,1025],

"lung": [14,105,208,355]});

df.plot("cigarettes", "CVD", kind="scatter")

lm = smf.ols("CVD ~ cigarettes", data=df).fit()

xmin = df.cigarettes.min()

xmax = df.cigarettes.max()

X = numpy.linspace(xmin, xmax, 100)

# params[0] is the intercept (beta₀)

# params[1] is the slope (beta₁)

Y = lm.params[0] + lm.params[1] * X

plt.plot(X, Y, color="darkgreen")
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Parameters of the linear model

▷ 𝛽0 is the intercept of the regression line
(where it meets the 𝑋 = 0 axis)

▷ 𝛽1 is the slope of the regression line

▷ Interpretation of 𝛽1 = 0.0475: a “unit”
increase in cigarette smoking is associated
with a 0.0475 “unit” increase in deaths from
lung cancer 0 5 10 15 20 25 30

0

20

40

60

𝛽0 {
𝛽1 = Δ𝑦

Δ𝑥
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Scatterplot of lung cancer deaths
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Lung cancer deaths for different smoking intensities

import pandas
import matplotlib.pyplot as plt

data = pandas.DataFrame({"cigarettes": [0,10,20,30],
"CVD": [572,802,892,1025],
"lung": [14,105,208,355]});

data.plot("cigarettes", "lung", kind="scatter")
plt.xlabel("Cigarettes smoked per day")
plt.ylabel("Lung cancer deaths")

Quite tempting to conclude that lung

cancer deaths increase l
inearly with

cigarette consumption…
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Fitting a linear model
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Lung cancer deaths for different smoking intensities

import numpy, pandas

import matplotlib.pyplot as plt

import statsmodels.formula.api as smf

df = pandas.DataFrame({"cigarettes": [0,10,20,30],

"CVD": [572,802,892,1025],

"lung": [14,105,208,355]});

df.plot("cigarettes", "lung", kind="scatter")

lm = smf.ols("lung ~ cigarettes", data=df).fit()

xmin = df.cigarettes.min()

xmax = df.cigarettes.max()

X = numpy.linspace(xmin, xmax, 100)

# params[0] is the intercept (beta₀)

# params[1] is the slope (beta₁)

Y = lm.params[0] + lm.params[1] * X

plt.plot(X, Y, color="darkgreen")

Download the associated

Python notebook at

risk-engineering.org
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Using the model for prediction

Q: What is the expected lung cancer mortality risk for a group of people who
smoke 15 cigarettes per day?

import numpy, pandas
import statsmodels.formula.api as smf

df = pandas.DataFrame({"cigarettes": [0,10,20,30],
"CVD": [572,802,892,1025],
"lung": [14,105,208,355]});

# create and fit the linear model
lm = smf.ols(formula="lung ~ cigarettes", data=df).fit()
# use the fitted model for prediction
lm.predict({"cigarettes": [15]}) / 100000.0
# probability of mortality from lung cancer, per person per year
array([ 0.001705])
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Assessing

model

quality

▷ How do we assess how well the linear model fits our observations?
• make a visual check on a scatterplot

• use a quantitative measure of “goodness of fit”

▷ Coefficient of determination 𝑟2: a number that indicates how well
data fit a statistical model
• it’s the proportion of total variation of outcomes explained by the model

• 𝑟2 = 1: regression line fits perfectly

• 𝑟2 = 0: regression line does not fit at all

▷ For simple linear regression, 𝑟2 is simply the square of the sample
correlation coefficient 𝑟
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Assessing model quality

Source: xkcd.com/1725, CC BY-NC licence
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Information on the linear model

> lm = smf.ols(formula='lung ~ cigarettes', data=df).fit()
> lm.summary()

OLS Regression Results
==============================================================================
Dep. Variable: lung R-squared: 0.987
Model: OLS Adj. R-squared: 0.980
Method: Least Squares F-statistic: 151.8
Date: Wed, 06 Jan 2016 Prob (F-statistic): 0.00652
Time: 14:01:34 Log-Likelihood: -16.359
No. Observations: 4 AIC: 36.72
Df Residuals: 2 BIC: 35.49
Df Model: 1
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 1.6000 17.097 0.094 0.934 -71.964 75.164
cigarettes 11.2600 0.914 12.321 0.007 7.328 15.192
==============================================================================
Omnibus: nan Durbin-Watson: 2.086
Prob(Omnibus): nan Jarque-Bera (JB): 0.534
Skew: -0.143 Prob(JB): 0.766
Kurtosis: 1.233 Cond. No. 31.4
==============================================================================
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Example: nosocomial infection risk
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Longer stays in hospitals are
associated with a higher risk
of nosocomial infection

Data source: SENIC survey on nosocomial risk
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Example: blood pressure and BMI

Data on Body Mass Index and systolic
blood pressure

A higher body mass index is
correlated with higher blood pressure

Python with a Pandas dataframe:

df.plot(x="BMI", y="SYBP",
kind="scatter", alpha=0.5)

Data source: NHANES survey, US CDC, 2009–2010
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Example: blood pressure and BMI

Data on Body Mass Index and systolic
blood pressure

A higher body mass index is
correlated with higher blood pressure

Same data as previous slide, with a
“hexplot” instead of scatterplot

Python with a Pandas dataframe:

df.plot(x="BMI", y="SYBP",
kind="hexbin", gridsize=25)

Data source: NHANES survey, US CDC, 2009–2010
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Example: blood pressure and BMI

Data on Body Mass Index and systolic
blood pressure. A higher body mass
index is correlated with higher blood
pressure.

Same data as previous slide, with a
kernel density plot instead of
scatterplot.

Python with a Pandas dataframe
using the Seaborn library:

jointplot(data=df,
x="BMI", y="SYBP",
kind="kde")

Data source: NHANES survey, US CDC, 2009–2010
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Example: intergenerational mobility in the USA
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R²: 0.998

Percentage of children in college at age 19 plotted
against the percentile rank of their parents’ income.
Data for the usa.

Intergenerational mobility (for example chance of
moving from bottom to top fifth of income
distribution) is similar for children entering labor
market today than in the 1970s. However, level of
inequality has diminished, so consequences of the
“birth lottery” are greater today.

(Political and moral implications of this analysis, and
associated risks, are beyond the scope of these slides,
but are one of our motivations for making these
materials available for free…)

→ scholar.harvard.edu/hendren/publications/united-states-still-land-

opportunity-recent-trends-intergenerational-mobility

Data source: opportunityinsights.org/
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Exercise: the “Dead grandmother problem”

Problem. Research by Prof. M. Adams suggests that the week prior to exam
time is an extremely dangerous time for the relatives of university students.
Data shows that a student’s grandmother is far more likely to die suddenly
just before the student takes an exam, than at any other time of year.

Theory. Family members literally worry themselves to death over the
outcome of their relatives’ performance on each exam.

Task: use linear regression to confirm that the severity of this phenomenon
is correlated to the student’s current grade.

Data source: math.toronto.edu/mpugh/DeadGrandmother.pdf
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Aside: linear regression in Excel

Explanatory video: youtu.be/ExfknNCvBYg

Summary:

▷ Functions SLOPE and INTERCEPT

▷ Correlation coefficient: function
CORREL
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Residuals plot

▷ In linear regression, the residual data is the difference between
the observed data of the outcome variable 𝑦 and the predicted
values ̂𝑦

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑦 − ̂𝑦

▷ The residuals plot should look “random” (no discernible pattern)
• if the residuals are not random, they suggest that your model is

systematically incorrect, meaning it can be improved

• see example to the right with no specific pattern

▷ If you spot a trend in the residuals plot (increasing, decreasing,
“U” shape), the data is most likely non-linear
• so a linear model is not a good choice for this problem…
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Multivariate regression

31 / 68

https://risk-engineering.org/?src=pdfslide


What is multivariate linear regression?

Univariate linear regression

𝑋−−−−−−−−−−−→𝑌

Multivariate linear regression

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑌

Multivariate linear regression involves more than one predictor variable
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Multivariate linear regression: equations

▷ Recall the equation for univariate linear regression:

̂𝑦 = 𝛽0 + 𝛽1𝑥

▷ Equation for multivariate linear regression:

̂𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + … + 𝛽𝑛𝑥𝑛

▷ The outcome variable is assumed to be a linear combination of the
predictor variables (the inputs)
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Example: prediction using a multivariate dataset

▷ Objective: predict energy output at a Combined Cycle Power Plant

▷ Data available: hourly averages of variables

Meaning Name Range

Ambient Temperature AT 1.81 – 37.11°C

Ambient Pressure AP 992.89 – 1033.30 millibar

Relative Humidity RH 25.56% – 100.16%

Exhaust Vacuum V 25.36 – 81.56 cm Hg

Net hourly electrical energy output PE 420.26 – 495.76 MW

▷ Let’s try to build a multivariate linear model to predict PE given inputs
AT, AP, RH and V

Dataset: archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
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Example: prediction using a multivariate dataset

▷ Dataset contains 9568 data points collected from a combined cycle power
plant over 6 years, when power plant was under full load

▷ A combined cycle power plant is composed of gas turbines, steam
turbines and heat recovery steam generators
• electricity is generated by gas & steam turbines, which are combined in one

cycle

• three ambient variables affect performance of the gas turbine

• exhaust vacuum affects performance of the steam turbine

▷ Data consists of hourly averages taken from various sensors located
around the plant that record the ambient variables every second

▷ Let’s load it into Python and examine it using the pandas library

Dataset: archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
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Example: prediction using a multivariate dataset

> import pandas
> data = pandas.read_csv("data/CCPP.csv")
> data.head()

AT V AP RH PE
0 14.96 41.76 1024.07 73.17 463.26
1 25.18 62.96 1020.04 59.08 444.37
2 5.11 39.40 1012.16 92.14 488.56
3 20.86 57.32 1010.24 76.64 446.48
4 10.82 37.50 1009.23 96.62 473.90
> data.describe()

AT V AP RH PE
count 9568.000000 9568.000000 9568.000000 9568.000000 9568.000000
mean 19.651231 54.305804 1013.259078 73.308978 454.365009
std 7.452473 12.707893 5.938784 14.600269 17.066995
min 1.810000 25.360000 992.890000 25.560000 420.260000
25% 13.510000 41.740000 1009.100000 63.327500 439.750000
50% 20.345000 52.080000 1012.940000 74.975000 451.550000
75% 25.720000 66.540000 1017.260000 84.830000 468.430000
max 37.110000 81.560000 1033.300000 100.160000 495.760000

Dataset: archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant

36 / 68

https://risk-engineering.org/?src=pdfslide
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant


Visualizing multivariate data: scatterplot matrix

We can obtain a first impression of the
dependency between variables by examining a
multidimensional scatterplot

from pandas.tools.plotting import scatter_matrix
data = pandas.read_csv("data/CCPP.csv")
scatter_matrix(data, diagonal="kde")

In this matrix, the diagonal contains a plot of
the distribution of each variable.
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Interpreting the scatterplot matrix

Observations:

▷ approximately linear relationship between
PE and the negative of AT

▷ approximately linear relationship between
PE and negative of V
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Visualizing multivariate data: 3D plotting

It is sometimes useful to examine 3D
plots of your observations

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(12, 8))
ax = Axes3D(fig, azim=-115, elev=15)
ax.scatter(data["AT"], data["V"], data["PE"])
ax.set_xlabel("AT")
ax.set_ylabel("V")
ax.set_zlabel("PE")
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Importance of preliminary data analysis

Consider a study that measures weekly exercise
and cholesterol in various age groups.

If we plot exercise against cholesterol and
segregate by age, we see a downward trend in
each group: more exercise leads to lower
cholesterol.

Note: fake (but plausibl
e!)

data
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Importance of preliminary data analysis

If we don’t segregate by age, we get the plot to
the right, which could lead to an incorrect
conclusion that more exercise is correlated with
more cholesterol.

There is an underlying variable age: older
people tend to exercise more, and also have
higher cholesterol.

This example from Causal inference in statistics: a primer, J. Pearl et al, 2016
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CCPP example: least squares regression with Python

# create fitted model using “formula” API of the statsmodels library
import statsmodels.formula.api as smf
> lm = smf.ols(formula='PE ~ AT + V + AP + RH', data=data).fit()
> print(lm.params)
Intercept 451.067793
AT -1.974731
V -0.234992
AP 0.065540
RH -0.157598

This means that the best formula to estimate output power as a function of AT, V,
AP and RH is

𝑃𝐸 = 451.067793 − 1.974731 𝐴𝑇 − 0.234992 𝑉 + 0.065540 𝐴𝑃 − 0.157598 𝑅𝐻
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Residuals plots

The residuals for each predictor
variable look random, except for a
mild quadratic shape for AT, which
we will ignore here.
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Residuals histogram

One assumption underlying linear regression is
that the variance of the residuals is normally
distributed (follows a Gaussian distribution).

Can be checked by plotting a histogram or a
Q-Q plot of the residuals, as shown to the right.

Example to the right: we have a deviation from
normality for large prediction errors, but
overall residuals follow a normal distribution.

−20 −10 0 10 20 30 40 50
0

200

400

600

800

1000 Histogram of the residuals

Download the associated

Python notebook at

risk-engineering.org
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CCPP example: prediction

Assuming the values below for our input variables, what is the predicted
output power?

AT 9.48

V 44.71

AP 1019.12

RH 66.43

> m = pandas.DataFrame({"AT": [9.48], "V": [44.71],
"AP": [1019.12], "RH": [66.43]})

> lm.predict(m)
[ 478.25471442]

Conclusion: the predicted output power is 478.3  MW.
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Assessing goodness of fit: 𝑅2

▷ For multiple linear regression, the coefficient of
determination 𝑅2 is calculated as

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

where
• 𝑆𝑆𝑟𝑒𝑠 = ∑𝑖(𝑦𝑖 − 𝑦𝑖)2 is the sum of the square of the residuals

• 𝑆𝑆𝑡𝑜𝑡 = ∑𝑖(𝑦𝑖 − ̄𝑦)2 is the total sum of squares

• 𝑦𝑖 are the observations, for 𝑖 = 1…𝑛

• 𝑦𝑖 are the predictions, for 𝑖 = 1…𝑛

• ̄𝑦 = 1
𝑛 ∑𝑛

𝑖=1 𝑦𝑖 is the mean of the observations

▷ The better the fit, the closer 𝑅2 is to 1

▷ 𝑅2 measures the proportion of variance in the observed data
that is explained by the model

Areas of red squares: squared residuals with respect to
the average value

Areas of blue squares: squared residuals with respect to
the linear regression
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Determining 𝑅2 in Python

> lm.summary()
OLS Regression Results

==============================================================================
Dep. Variable: PE R-squared: 0.927
Model: OLS Adj. R-squared: 0.927
Method: Least Squares F-statistic: 2.295e+04
Date: Tue, 05 Jan 2016 Prob (F-statistic): 0.00
Time: 17:21:31 Log-Likelihood: -21166.
No. Observations: 7196 AIC: 4.234e+04
Df Residuals: 7191 BIC: 4.238e+04
Df Model: 4
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 460.9650 11.308 40.764 0.000 438.798 483.132
AT -1.9809 0.018 -111.660 0.000 -2.016 -1.946
V -0.2303 0.008 -27.313 0.000 -0.247 -0.214
AP 0.0556 0.011 5.073 0.000 0.034 0.077
RH -0.1576 0.005 -32.827 0.000 -0.167 -0.148
==============================================================================
Omnibus: 864.810 Durbin-Watson: 2.009
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4576.233
Skew: -0.459 Prob(JB): 0.00
Kurtosis: 6.797 Cond. No. 2.13e+05
==============================================================================
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Warnings concerning

linear regression
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Warnings concerning use of linear regression

1 Check that your data is really linear!

2 Make sure your sample size is sufficient

3 Don’t use a regression model to predict responses outside the range of
data that was used to build the model

4 Results can be highly sensitive to treatment of outliers

5 Multiple regression: check that your predictors are independent

6 Beware order of effect problems
• regression shows correlation but does not necessarily imply causality

7 Beware the regression to the mean effect
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Check assumptions underlying linear regression

▷ Examine scatterplot of outcome variable with each predictor to validate
the assumption of linearity

▷ Other assumptions underlying the use of linear regression:
• Check that the mean of the residuals is almost equal to zero for each value of

outcome

• Check that the residuals have constant variance (→ residuals scatterplot on
slide 24)

• Check that residuals are uncorrelated (→ residuals scatterplot)

• Check that residuals are normally distributed (→ residuals histogram or
QQ-plot) or that you have an adequate sample size to rely on large sample
theory
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Make sure your sample size is sufficient

▷ There are no rules on required sample size for a regression analysis
• depends on the number of predictor variables, on the effect size, the objective

of the analysis

▷ Some general observations:
• bigger samples are better (give more confidence in the model)

• sample size is often determined by pragmatic considerations (measurements
may be expensive, limited historical data available)

• sample size should be seen as one consideration in an optimization problem
where the cost in time/money/effort of obtaining more data is weighed against
the benefits (better predictions, improved understanding)
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Extrapolate with care
To infinity and beyond!

When using a linear model for
prediction, be very careful when
predicting responses outside of the
range of data that was used to build
the model.

Make sure you have well-grounded
scientific reasons for arguing that the
model also applies in areas where you
don’t have available data.

Image source: xkcd.com/605/, CC BY-NC licence
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Treatment of outlier data

▷ Real datasets often contain spurious data points
• errors made in measurement, noise, data entry errors…

▷ These may have a significant impact on your predictions

▷ However, some outlier data may just be “different” but meaningful
observations
• possibly an early warning sign of an upcoming catastrophe!

▷ The best method of handling outliers depends on the objective of your
analysis, on how you obtained your data…
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Illustration: in the early 1980s, scientists
were shocked by a dramatic seasonal drop in
ozone levels over Antarctica and spent two
years analyzing their data. Satellites had been
correctly recording the “hole in the ozone
layer”, but were programmed to reject outliers
as anomalies.

[R. Benedick, Scientific American, April 1992]
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Another significant outlier

Source: nytimes.com/2022/05/26/briefing/guns-america-shooting-deaths.html
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Recommendations for handling outliers

▷ Analyze outliers individually, for instance by plotting your data

▷ Eliminate from the dataset any outliers that you are confident you can
identify as being the result of errors in measurement or data entry

▷ For remaining outliers, report prediction results both with and without
the outliers

▷ Consider using a robust linear regression technique
• example: RLM from the statsmodels library (Python)

• RANSAC from the scikit-learn library (Python)
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Beware of order of effect problems

Consider infant mortality
data from the World Bank

Data source: data.worldbank.org
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Predictor and outcome variables
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▷ Two variables:

• infant mortality rate (per 1000 births)

• number of births per woman

▷ Which is the predictor variable and which is the
outcome?

▷ Choice 1: fertility = f(infant-mortality)

• predictor: infant mortality rate

• outcome: births per woman

▷ Choice 2: infant-mortality = f(fertility)

• predictor: births per woman

• outcome: infant mortality rate

Data source: data.worldbank.org
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Predictor and outcome variables
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▷ Two variables:

• infant mortality rate (per 1000 births)

• number of births per woman

▷ Which is the predictor variable and which is the
outcome?

▷ Choice 1: fertility = f(infant-mortality)

• predictor: infant mortality rate

• outcome: births per woman

▷ Choice 2: infant-mortality = f(fertility)

• predictor: births per woman

• outcome: infant mortality rate

Data source: data.worldbank.org
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Predictor and outcome variables

▷ The answer depends on the framing of the research question

▷ If hypothesis is influence of infant mortality on number of births per
woman, then
• predictor: infant mortality rate

• outcome: births per woman

▷ If hypothesis is influence of number of births per woman on infant
mortality, then
• predictor: births per woman

• outcome: infant mortality rate
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Directionality of effect problem

Examples:

▷ People who exercise more tend to have better health

▷ Police departments with higher budgets tend to be located in areas with
high crime levels

▷ Middle-aged men who wear hats are more likely to be bald

▷ Young smokers who buy contraband cigarettes tend to smoke more
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Regression to the mean

▷ Following an extreme random event, the next random event is likely to be
less extreme
• if a variable is extreme on its first measurement, it will tend to be closer to the

average on its second measurement

▷ Examples:
• If today is extremely hot, you should probably expect tomorrow to be hot, but

not quite as hot as today

• If a baseball player just had by far the best season of his career, his next year is
likely to be a disappointment

▷ Extreme events tend to be followed by something closer to the norm
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Regression to the mean

‘‘ Statistical regression to the mean predicts that patients selected for abnormalcy
will, on the average, tend to improve. We argue that most improvements
attributed to the placebo effect are actually instances of statistical regression.

Thus, we urge caution in interpreting patient improvements as causal effects of
our actions and should avoid the conceit of assuming that our personal presence
has strong healing powers. [McDonald et al 1983]

▷ Group of patients that are treated with a placebo are affected by two
processes:
• genuine psychosomatic placebo effect

• “get better anyway” effect (regression to the mean)

Source: How much of the placebo ‘effect’ is really statistical regression?, C. McDonald & S. Mazzuca, Statistics in medicine, vol. 2, 417–427

(1983)
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Regression to the mean

▷ Classical example of regression to the mean: effectiveness of speed
cameras in preventing accidents

▷ Speed cameras tend to be installed after an exceptional series of accidents
at that location

▷ If the accident rate is particularly high somewhere one year, it will
probably be lower the next year
• irrespective of whether a speed camera is installed…

▷ To avoid this bias, implement a randomized trial
• choose several similar sites

• allocate them at random to have a camera or no camera

• check whether the speed camera has a statistically measurable effect
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Aside: origin of the term

▷ Francis Galton (1822–1911) was an English anthropologist and statistician (and
polymath)

▷ Discovered/formalized the statistical concept of correlation

▷ Collected data on the height of the descendants of extremely tall and
extremely short trees
• to analyze how “co-related” trees were to their parents

• publication: Regression Towards Mediocrity in Hereditary Stature (1866)

‘‘ It appeared from these experiments that the offspring did not tend to
resemble their parents seeds in size, but to be always more mediocre than
they - to be smaller than the parents, if the parents were large; to be larger
than the parents, if the parents were small.

▷ But towards the end of his life, studied whether human ability was
hereditary and promoted eugenics…
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Other

applicable

techniques

▷ Linear regression techniques are not applicable for category data,
such as success/failure data
• use generalized linear models (glm) instead

▷ Sometimes machine learning algorithms can be more appropriate
than regression techniques
• example algorithms: random forest, support vector machines, neural

networks
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Image

credits

▷ L’avenue de l’Opéra on slide 4 by Villemard, 1910 (BNF collection)

▷ Clockwork on slide 4: flic.kr/p/edA7aA, CC BY licence

▷ Heart on slide 10: Wikimedia Commons, public domain

▷ Lungs on slide 13: Wikimedia Commons, public domain

▷ Grandmother on slide 28: Marjan Lazarevski via flic.kr/p/dJfAWQ, CC
BY-ND licence

▷ Coefficient of determination (slide 39): Orzetto via Wikimedia Commons, CC
BY-SA licence

▷ Sentinel satellite on slide 54: copyright ESA/ATG medialab, ESA standard
licence

▷ Speed camera on slide 63: Mick Baker via flic.kr/p/bsBt8f, CC BY-ND
licence

▷ Photo of Francis Galton on slide 64: Wikimedia Commons, public domain

For more free content on risk engineering,
visit risk-engineering.org
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Further

reading

▷ The Stanford Online class on Statistical Learning introduces
supervised learning with a focus on regression and classification
methods
→ online.stanford.edu

▷ The online, open-access textbook Forecasting: principles and practice
→ otexts.org/fpp2 (uses R rather than Python)

▷ Online book Practical regression and Anova using R
→ cran.r-project.org/doc/contrib/Faraway-PRA.pdf

For more free content on risk engineering,
visit risk-engineering.org
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Feedback welcome!

Was some of the content unclear? Which parts were most useful to
you? Your comments to feedback@risk-engineering.org
(email) or @LearnRiskEng (Twitter) will help us to improve these
materials. Thanks!

@LearnRiskEng

fb.me/RiskEngineering

This presentation is distributed under the terms of the
Creative Commons Attribution – Share Alike licence

For more free content on risk engineering,
visit risk-engineering.org
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