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Context

▷ Some problems cannot be expressed in analytical form

▷ Some problems are difficult to define in a deterministic manner

▷ Modern computers are amazingly fast

▷ Allow you to run “numerical experiments” to see what happens
“on average” over a large number of runs
• also called stochastic simulation

Etymological note: stochastic
is a synonym for probabilistic: the

former comes from the Greek word stokházomai, “aiming at a target,

guessing” and the latter from the Latin term probābilis (“probable,

credible”)
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Monte Carlo simulation

▷ Monte Carlo method: computational method using repeated random
sampling to obtain numerical results
• named after gambling in casinos

▷ Technique invented during the Manhattan project (us nuclear bomb
development)
• their development coincides with invention of electronic computers, which

greatly accelerated repetitive numerical computations

▷ Widely used in engineering, finance, business, project planning

▷ Implementation with computers uses pseudo-random number
generators
→ random.org/randomness/

Photo: Monte Carlo casino
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Monte Carlo simulation: steps

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

 

Define the domain of possible inputs.

The simulated “universe” should be similar to
the universe whose behavior we wish to
describe and investigate.
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Monte Carlo simulation: steps

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

 

Generate inputs randomly from a
probability distribution over the domain

▷ inputs should be generated so that their
characteristics are similar to the real
universe we are trying to simulate

▷ in particular, dependencies between the
inputs should be represented
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Monte Carlo simulation: steps

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

 

The computation should be deterministic.
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Monte Carlo simulation: steps

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

 

Aggregate the results to obtain the output of
interest.

Typical outputs:

▷ histogram

▷ summary statistics (mean, standard
deviation…)

▷ confidence intervals
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Example: estimate the value of pi

(0, 0)
r = 1

▷ Consider the largest circle which can be fit in the square ranging on ℝ2

over [−1, 1]²
• the circle has radius 1 and area π

• the square has an area of 2² = 4

• the ratio between their areas is thus 𝜋
4

▷ We can approximate the value of π using the following Monte Carlo
procedure:
1 draw the square over [−1, 1]²

2 draw the largest circle that fits inside the square

3 randomly scatter a large number 𝑁 of grains of rice over the square

4 count how many grains fell inside the circle

5 the count divided by 𝑁 and multiplied by 4 is an approximation of π
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Example: estimate the value of pi

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

 

All points within the [-1, 1]² unit square, uniformly
distributed.
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Example: estimate the value of pi

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

 

Generate one point (x, y) from the unit square in Python:

x = numpy.random.uniform(-1, 1)
y = numpy.random.uniform(-1, 1)
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Example: estimate the value of pi

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

 

Test whether a randomly generated point (x, y) is within
the circle:

if numpy.sqrt(x**2 + y**2) < 1:
print("The point is inside")
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Example: estimate the value of pi

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

 

Count the proportion of points that are within the circle:

N = 10_000
inside = 0
for i in range(N):

x = numpy.random.uniform(-1, 1)
y = numpy.random.uniform(-1, 1)
if numpy.sqrt(x**2 + y**2) < 1:

inside += 1
p = inside / float(N)
print("Proportion inside: {}".format(p))
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Example: estimate the value of pi

Putting it all together: here is an implementation in
Python with the NumPy library.

import numpy

N = 10_000
inside = 0
for i in range(N):

x = numpy.random.uniform(-1, 1)
y = numpy.random.uniform(-1, 1)
if numpy.sqrt(x**2 + y**2) < 1:

inside += 1
print(4*inside/float(N))
3.142

Download the associated

Python notebook at

risk-engineering.org
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Exercise: speed of convergence

▷ Mathematical theory states that the error of a Monte Carlo estimation
technique should decrease proportionally to the square root of the
number of trials

▷ Exercise: modify the Monte Carlo procedure for estimation of π
• within the loop, calculate the current estimation of π

• calculate the error of this estimation

• plot the error against the square root of the current number of iterations
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Why does

it work?

▷ The law of large numbers describes what happens when
performing the same experiment many times

▷ After many trials, the average of the results should be close to the
expected value
• increasing the number of trials will increase accuracy

▷ For Monte Carlo simulation, this means that we can learn properties
of a random variable (mean, variance, etc.) simply by simulating it
over many trials
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Example: coin flipping

Flip a coin 10 times. What is the probability of getting more than 3 heads?

Analytical solution

Let’s try to remember how the binomial
distribution works. Here we have 𝑛 =
10, 𝑝 =0.5 and cdf(3) is the probability
of seeing three or fewer heads.

> from scipy.stats import binom
> throws = binom(n=10, p=0.5)
> 1 - throws.cdf(3)
0.828125

Monte Carlo simulation

Just simulate the coin flip sequence a million
times and count the simulations where we
have more than 3 heads.

import numpy
def headcount():

tosses = numpy.random.uniform(0, 1, 10)
return (tosses > 0.5).sum()

N = 1_000_000
count = 0
for i in range(N):

if headcount() > 3: count += 1
count / float(N)
0.828117
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Application to uncertainty analysis

▷ Uncertainty analysis: propagate
uncertainty on input variables
through the model to obtain a
probability distribution of the
output(s) of interest

▷ Uncertainty on each input variable
is characterized by a probability
density function

▷ Run the model a large number of
times with input values drawn
randomly from their pdf

▷ Aggregate the output uncertainty
as a probability distribution

model

input variable 1

input variable 2

input variable 3

−3 −2 −1 0 1 2 3

0
20

40
60

80

probability density
 of the

output of interest

more dispersion
of the model output

implies more 
uncertainty

...

→ slides on uncertainty in

risk analysis at

risk-engineering.org
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A simple application in uncertainty propagation
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▷ The body mass index (bmi) is the ratio body mass (𝑘𝑔)
body height (𝑚)2

• often used as an (imperfect) indicator of obesity or malnutrition

▷ Task: calculate your bmi and the associated uncertainty interval,
assuming:
• your weight scale tells you that you weigh 84 kg (precision shown to the

nearest kilogram)

• a tape measure says you are between 181 and 182 cm tall (most likely value is
181.5 cm)

▷ We will run a Monte Carlo simulation on the model bmi = 𝑚
ℎ2 with

• 𝑚 drawn from a 𝑈(83.5, 84.5) uniform distribution

• ℎ drawn from a 𝑇(1.81, 1.815, 1.82) triangular distribution
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A simple application in uncertainty propagation

import numpy
from numpy.random import *
import matplotlib.pyplot as plt

N = 10_000
def BMI():

m = uniform(83.5, 84.5)
h = triangular(1.81, 1.815, 1.82)
return m / h**2

sim = numpy.zeros(N)
for i in range(N):

sim[i] = BMI()
plt.hist(sim)
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A simple application in uncertainty propagation

▷ Note: analytical estimation of the output uncertainty would be
difficult even on this trivial example

▷ With more than two input probability distributions, becomes
very difficult

▷ Quantile measures, often needed for risk analysis, are often
difficult to calculate analytically
• “what is the 95th percentile of the high water level?”

▷ Monte Carlo techniques are a simple and convenient way to
obtain these numbers
• express the problem in a direct way and let the computer do the
hard work!
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Second example for uncertainty propagation

▷ 𝑋 and 𝑌 are both uniformly distributed over
[0, 100]

▷ We are interested in the distribution of
𝑍 = 𝑋 × 𝑌

▷ Q: What is the 95th percentile of 𝑍?

N = 10_000
zs = numpy.zeros(N)
for i in range(N):

x = numpy.random.uniform(0, 100)
y = numpy.random.uniform(0, 100)
zs[i] = x * y

numpy.percentile(zs, 95)
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Application in resolving numerical integrals

▷ Assume we want to evaluate an integral ∫𝐼 𝑓 (𝑥)d𝑥

▷ Principle: the integral to compute is related to the expectation
of a random variable

𝔼(𝑓 (𝑋)) = ∫
𝐼
𝑓 (𝑥)d𝑥

▷ Method:
• Sample points within 𝐼

• Calculate the mean of the random variable within 𝐼

• Integral = sampled area × mean

▷ Advantages: the method works even without knowing the
analytical form of 𝑓, and also if 𝑓 is not continuous
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Trivial integration example

0 1 2 3 4 5 6

0
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20

30

𝑦 =
𝑥2

𝑥

𝑦

Task: find the shaded area, ∫
5

1
𝑥2 d𝑥

Analytical solution

import sympy
x = sympy.Symbol("x")
i = sympy.integrate(x**2)
i.subs(x, 5) - i.subs(x, 1)
124/3
float(i.subs(x, 5) - i.subs(x, 1))
41.333333333333336

Numerical solution

N = 100_000
accum = 0
for i in range(N):

x = numpy.random.uniform(1, 5)
accum += x**2

area = 4
integral = area * accum / float(N)
41.278

The SymPy library for symbolic mathematics in Python is available from sympy.org
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Simple integration example

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
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8,000

𝑦 = 𝑒𝑥𝑝(𝑥2)

𝑥

𝑦

Task: find the shaded area, ∫
3

1
𝑒𝑥2 d𝑥

Analytical solution

import sympy
x = sympy.Symbol("x")
i = sympy.integrate(sumpy.exp(x**2))
i.subs(x, 3) - i.subs(x, 1)
-sqrt(pi)*erfi(1)/2 + sqrt(pi)*erfi(3)/2
float(i.subs(x, 3) - i.subs(x, 1))
1443.082471146807

Numerical solution

N = 100_000
accum = 0
for i in range(N):

x = numpy.random.uniform(1, 3)
accum += numpy.exp(x**2):

count += 1
area = 3 - 1
integral = area * accum / float(N)
1451.3281492713274

The SymPy library for symbolic mathematics in Python is available from sympy.org
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2D integration example

Task: resolve the double integral

∫
1

0
∫

6

4
𝑐𝑜𝑠(𝑥4) + 3𝑦2 d𝑥d𝑦

Analytical solution

import sympy
x = sympy.Symbol("x")
y = sympy.Symbol("y")
d1 = sympy.integrate(sympy.cos(x**4) + 3 * y**2, x)
d2 = sympy.integrate(d1.subs(x, 6) - d1.subs(x, 4), y)
sol = d2.subs(y, 1) - d2.subs(y, 0)
float(sol)
2.005055086749674

Numerical solution

N = 100_000
accum = 0
for i in range(N):

x = numpy.random.uniform(4, 6)
y = numpy.random.uniform(0, 1)
accum += numpy.cos(x**4) + 3 * y * y

volume = 2 * 1
integral = volume * accum/float(N)
2.0100840446967103
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Relevant tools

(if you can’t use Python…)
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Relevant commercial tools

Example tools with Excel integration:

▷ Palisade TopRank®

▷ Oracle Crystal Ball®

Typically quite expensive…
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Free plugins for Microsoft Excel

▷ A free Microsoft Excel plugin from Vose Software
• vosesoftware.com/products/modelrisk/

• “standard” version is free (requires registration)

▷ Simtools, a free add-in for Microsoft Excel by R. Myerson,
professor at the University of Chicago
• home.uchicago.edu/ rmyerson/addins.htm

▷ MonteCarlito, a free add-in for Microsoft Excel
• montecarlito.com

• distributed under the terms of the gnu General Public Licence
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Beware the risks of Excel!

▷ Student finds serious errors in austerity research undertaken by
Reinhart and Rogoff (cells left out of calculations of averages…)

▷ JP Morgan underestimates value at risk due to a spreadsheet
error

▷ London 2012 Olympics: organization committee oversells
synchronized swimming events by 10 000 tickets

▷ Cement factory receives 350 000 usd fine for a spreadsheet
error (2011, Arizona)

Source: European Spreadsheet Risks Interest Group, eusprig.org/horror-stories.htm
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Sampling methods
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Latin

Hypercube

Sampling

▷ With standard random sampling, you may end up with samples
unevenly spread out over the input space

▷ Latin Hypercube Sampling (lhs):
• split up each input variable into a number of equiprobable intervals

• sample separately from each interval

▷ Also called stratified sampling without replacement

▷ Typically leads to faster convergence than Monte Carlo procedures
using standard random sampling
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Sampling methods illustrated

Standard sampling (one dimensional):

1 generate a random number from a uniform
distribution between 0 and 1

2 use the inverse cdf of the target distribution
(the percentile function) to calculate the
corresponding output

3 repeat

Illustrated to the right with the normal
distribution.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

𝑥

𝐶
𝐷

𝐹
(𝑥

)

 

https://risk-engineering.org/?src=pdfslide


Sampling methods illustrated

Standard sampling (one dimensional):

1 generate a random number from a uniform
distribution between 0 and 1

2 use the inverse cdf of the target distribution
(the percentile function) to calculate the
corresponding output

3 repeat

Illustrated to the right with the normal
distribution.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

𝑥

𝐶
𝐷

𝐹
(𝑥

)

 

https://risk-engineering.org/?src=pdfslide


Sampling methods illustrated

Standard sampling (one dimensional):

1 generate a random number from a uniform
distribution between 0 and 1

2 use the inverse cdf of the target distribution
(the percentile function) to calculate the
corresponding output

3 repeat

Illustrated to the right with the normal
distribution.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

𝑥

𝐶
𝐷

𝐹
(𝑥

)

 

https://risk-engineering.org/?src=pdfslide


Sampling methods illustrated

Standard sampling (one dimensional):

1 generate a random number from a uniform
distribution between 0 and 1

2 use the inverse cdf of the target distribution
(the percentile function) to calculate the
corresponding output

3 repeat

Illustrated to the right with the normal
distribution.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

𝑥

𝐶
𝐷

𝐹
(𝑥

)

 

https://risk-engineering.org/?src=pdfslide


Sampling methods illustrated

Standard sampling (one dimensional):

1 generate a random number from a uniform
distribution between 0 and 1

2 use the inverse cdf of the target distribution
(the percentile function) to calculate the
corresponding output

3 repeat

Illustrated to the right with the normal
distribution.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

𝑥

𝐶
𝐷

𝐹
(𝑥

)

 

https://risk-engineering.org/?src=pdfslide


Latin Hypercube Sampling: illustration

Latin hypercube sampling (one dimensional):

1 split the [0,1] interval into 10 equiprobable
intervals

2 propagate via the inverse cdf to the output
distribution

3 take 𝑁/10 standard samples from each
interval of the output distribution

Illustrated to the right with the normal
distribution.
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Note: spacing of red points is regular; more space

between blue points near the tails of the distribution

(where probability density is lower)

Note: this method assumes we know

how to calculate the inverse CDF
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Other

sampling

techniques

Another random sampling technique you may see in the literature: use
of low-discrepancy sequences to implement quasi-Monte Carlo
sampling
▷ low-discrepancy (or “quasi-random”) sequences are constructed

deterministically using formulæ

▷ they fill the input space more quickly than pseudorandom sequences,
so lead to faster convergence

▷ intuition behind these types of sequences: each time you draw a new
point it is placed as far away as possible from all points you already
have
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Low

discrepancy

sequences

A low discrepancy sequence is a deterministic mathematical sequence
that doesn’t show clusters and tends to fill space more uniformly than
pseudo-random points. (Pseudo-random means as random as you can
get when working with a computer.)
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0.0

0.2

0.4

0.6

0.8

1.0
Pseudo-random sequence
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0.0

0.2

0.4

0.6

0.8

1.0
2D Halton sequence

Commonly used low discrepancy sequences for Monte Carlo modelling
include the Halton sequence and the Sobol’ sequence.

More information: see the Jupyter/Python notebook at
risk-engineering.org
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The Saint Petersberg game

▷ You flip a coin repeatedly until a tail first appears
• the pot starts at 1€ and doubles every time a head appears

• you win whatever is in the pot the first time you throw tails and the game ends

▷ For example:
• T (tail on the first toss): win 1€

• H T (tail on the second toss): win 2€

• H H T: win 4€

• H H H T: win 8€

▷ Reminder (see associated slides on Economic viewpoint on risk transfer ):
the expected value of this game is infinite

→ let’s estimate the expected value using a Monte Carlo simulation
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The Saint Petersburg game and limits of Monte Carlo methods

import numpy, matplotlib.pyplot as plt

def petersburg():
payoff = 1
while numpy.random.uniform() > 0.5:

payoff *= 2
return payoff

N = 1_000_000
games = numpy.zeros(N)
for i in range(N):

games[i] = petersburg()

plt.hist(numpy.log(games), alpha=0.5)
print(games.mean())
12.42241

This game illustrates a situation where very unlikely events have an extremely
high impact on the mean outcome. Monte Carlo simulation will not allow us to
obtain a good estimation of the true (theoretical) expected value.
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Image

credits

▷ Monte Carlo casino on slide 3: Wikimedia Commons, CC BY licence

▷ Body mass index chart on slide 10: InvictaHOG from Wikimedia Commons,
public domain

▷ Cat on slide 12: Marina del Castell via flic.kr/p/otQtCc, CC BY licence
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For

more

information

▷ Harvard course on Monte Carlo methods,
harvard.edu/courses/am207/

▷ MIT OpenCourseWare notes from the Numerical computation for
mechanical engineers course

▷ Article Principles of Good Practice for Monte Carlo Techniques, Risk
Analysis, 1994, doi: 10.1111/j.1539-6924.1994.tb00265.x

▷ Book The Monte Carlo Simulation Method for System Reliability and
Risk Analysis, Enrico Zio, isbn: 978-1447145882

For more free content on risk engineering,
visit risk-engineering.org
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Feedback welcome!

Was some of the content unclear? Which parts were most useful to
you? Your comments to feedback@risk-engineering.org
(email) or @LearnRiskEng (Twitter) will help us to improve these
materials. Thanks!

@LearnRiskEng

fb.me/RiskEngineering

This presentation is distributed under the terms of the
Creative Commons Attribution – Share Alike licence

For more free content on risk engineering,
visit risk-engineering.org
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