Monte Carlo methods
 for risk analysis

Eric Marsden
eric.marsden@risk-engineering.org

Context

\triangleright Some problems cannot be expressed in analytical form
\triangleright Some problems are difficult to define in a deterministic manner
\triangleright Modern computers are amazingly fast
\triangleright Allow you to run "numerical experiments" to see what happens "on average" over a large number of runs

- also called stochastic simulation

ENGINEERING

Monte Carlo simulation

\triangleright Monte Carlo method: computational method using repeated random sampling to obtain numerical results

- named after gambling in casinos
\triangleright Technique invented during the Manhattan project (US nuclear bomb development)
- their development coincides with invention of electronic computers, which greatly accelerated repetitive numerical computations
\triangleright Widely used in engineering, finance, business, project planning
\triangleright Implementation with computers uses pseudo-random number generators
\rightarrow random.org/randomness/

Monte Carlo simulation: steps

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

Define the domain of possible inputs.
The simulated "universe" should be similar to the universe whose behavior we wish to describe and investigate.

ENGINEERING

Monte Carlo simulation: steps

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

Generate inputs randomly from a probability distribution over the domain
\triangleright inputs should be generated so that their characteristics are similar to the real universe we are trying to simulate
\triangleright in particular, dependencies between the inputs should be represented

ENGINEERING

Monte Carlo simulation: steps

Define possible inputs
The computation should be deterministic.

Generate inputs randomly

Computation on the inputs

Aggregate the results

Monte Carlo simulation: steps

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

Aggregate the results to obtain the output of interest.

Typical outputs:
\triangleright histogram
\triangleright summary statistics (mean, standard deviation...)
\triangleright confidence intervals

Example: estimate the value of pi

\triangleright Consider the largest circle which can be fit in the square ranging on \mathbb{R}^{2} over $[-1,1]^{2}$

- the circle has radius 1 and area π
- the square has an area of $2^{2}=4$
- the ratio between their areas is thus $\frac{\pi}{4}$
\triangleright We can approximate the value of π using the following Monte Carlo procedure:

1. draw the square over $[-1,1]^{2}$

2 draw the largest circle that fits inside the square
3 randomly scatter a large number N of grains of rice over the square
4 count how many grains fell inside the circle
5 the count divided by N and multiplied by 4 is an approximation of π

Example: estimate the value of pi

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

All points within the $[-1,1]^{2}$ unit square, uniformly distributed.

Example: estimate the value of pi

Define possible inputs
Generate one point (x, y) from the unit square in Python:

Generate inputs randomly

Computation on the inputs

```
x = numpy.random.uniform(-1, 1)
y = numpy.random.uniform(-1, 1)
```

Aggregate the results

Example: estimate the value of pi

Define possible inputs

Generate inputs randomly

Computation on the inputs

Aggregate the results

Test whether a randomly generated point (x, y) is within the circle:

```
if numpy.sqrt(x**2 + y**2) < 1:
    print("The point is inside")
```

ENGINEERING

Example: estimate the value of pi

Define possible inputs
Count the proportion of points that are within the circle:

Generate inputs randomly

Computation on the inputs

Aggregate the results

```
N = 10_ 000
inside = 0
for i in range(N):
    x = numpy.random.uniform(-1, 1)
    y = numpy.random.uniform(-1, 1)
    if numpy.sqrt(x**2 + y**2) < 1:
        inside += 1
p = inside / float(N)
print("Proportion inside: {}".format(p))
```


Example: estimate the value of pi

Putting it all together: here is an implementation in Python with the NumPy library.

```
import numpy
N = 10_000
inside = 0
for i in range(N):
    x = numpy.random.uniform(-1, 1)
    y = numpy.random.uniform(-1, 1)
    if numpy.sqrt(x**2 + y**2) < 1:
        inside += 1
print(4*inside/float(N))
3.142
```


Download the associated Python notebook at
risk-engineering.org

Risk ENGINEERING

Exercise: speed of convergence

\triangleright Mathematical theory states that the error of a Monte Carlo estimation technique should decrease proportionally to the square root of the number of trials
\triangleright Exercise: modify the Monte Carlo procedure for estimation of π

- within the loop, calculate the current estimation of π
- calculate the error of this estimation
- plot the error against the square root of the current number of iterations
\triangleright The law of large numbers describes what happens when performing the same experiment many times

Why does
 it work?

\triangleright After many trials, the average of the results should be close to the expected value

- increasing the number of trials will increase accuracy
\triangleright For Monte Carlo simulation, this means that we can learn properties of a random variable (mean, variance, etc.) simply by simulating it over many trials

Example: coin flipping

Flip a coin 10 times. What is the probability of getting more than 3 heads?

Example: coin flipping

Flip a coin 10 times. What is the probability of getting more than 3 heads?

Analytical solution

Let's try to remember how the binomial distribution works. Here we have $n=$ $10, p=0.5$ and $\operatorname{cdf}(3)$ is the probability of seeing three or fewer heads.
> from scipy.stats import binom
$>$ throws $=\operatorname{binom}(\mathrm{n}=10, \mathrm{p}=0.5)$
>1 - throws.cdf(3)
Q. 828125

ENGINEERING

Example: coin flipping

Flip a coin 10 times. What is the probability of getting more than 3 heads?

Analytical solution

Let's try to remember how the binomial distribution works. Here we have $n=$ $10, p=0.5$ and $\operatorname{cdf}(3)$ is the probability of seeing three or fewer heads.

```
> from scipy.stats import binom
> throws = binom(n=10, p=0.5)
> 1 - throws.cdf(3)
Q.828125
```


Monte Carlo simulation

Just simulate the coin flip sequence a million times and count the simulations where we have more than 3 heads.

```
import numpy
def headcount():
    tosses = numpy.random.uniform(0, 1, 10)
    return (tosses > 0.5).sum()
N = 1_ }000_00
count = 0
for i in range(N):
    if headcount() > 3: count += 1
count / float(N)
Q.828117
```


Application to uncertainty analysis

\triangleright Uncertainty analysis: propagate uncertainty on input variables through the model to obtain a probability distribution of the output(s) of interest
\triangleright Uncertainty on each input variable is characterized by a probability density function
\triangleright Run the model a large number of times with input values drawn

randomly from their PDF
\triangleright Aggregate the output uncertainty as a probability distribution
> \rightarrow slides on uncertainty in
> risk analysis at
> risk-engineering.org
$14 / 37$

A simple application in uncertainty propagation

\triangleright The body mass index (BMI) is the ratio $\frac{\text { body mass }(k g)}{\text { body height }(m)^{2}}$

- often used as an (imperfect) indicator of obesity or malnutrition

\triangleright Task: calculate your BMI and the associated uncertainty interval, assuming:
- your weight scale tells you that you weigh 84 kg (precision shown to the nearest kilogram)
- a tape measure says you are between 181 and 182 cm tall (most likely value is 181.5 cm)
\triangleright We will run a Monte Carlo simulation on the model BMI $=\frac{m}{h^{2}}$ with
- m drawn from a $U(83.5,84.5)$ uniform distribution
- h drawn from a $T(1.81,1.815,1.82)$ triangular distribution

ENGINEERING

A simple application in uncertainty propagation

```
import numpy
from numpy.random import *
import matplotlib.pyplot as plt
N = 10_000
def BMI():
    m = uniform(83.5, 84.5)
    h = triangular(1.81, 1.815, 1.82)
    return m / h**2
sim = numpy.zeros(N)
for i in range(N):
    sim[i] = BMI()
plt.hist(sim)
```


A simple application in uncertainty propagation

\triangleright Note: analytical estimation of the output uncertainty would be
 difficult even on this trivial example
\triangleright With more than two input probability distributions, becomes very difficult
\triangleright Quantile measures, often needed for risk analysis, are often difficult to calculate analytically

- "what is the $95^{\text {th }}$ percentile of the high water level?"
\triangleright Monte Carlo techniques are a simple and convenient way to obtain these numbers
- express the problem in a direct way and let the computer do the hard work!

Second example for uncertainty propagation

$\triangleright X$ and Y are both uniformly distributed over [0,100]
\triangleright We are interested in the distribution of $Z=X \times Y$
$\triangleright \mathbf{Q}$: What is the $95^{\text {th }}$ percentile of Z ?

```
```

N = 10_ 000

```
```

N = 10_ 000
zs = numpy.zeros(N)
zs = numpy.zeros(N)
for i in range(N):
for i in range(N):
x = numpy.random.uniform(0, 100)
x = numpy.random.uniform(0, 100)
y = numpy.random.uniform(0, 100)
y = numpy.random.uniform(0, 100)
zs[i] = x * y
zs[i] = x * y
numpy.percentile(zs, 95)

```
```

numpy.percentile(zs, 95)

```
```

ENGINEERING

Application in resolving numerical integrals

\triangleright Assume we want to evaluate an integral $\int_{I} f(x) \mathrm{d} x$
\triangleright Principle: the integral to compute is related to the expectation
 of a random variable

$$
\mathbb{E}(f(X))=\int_{I} f(x) \mathrm{d} x
$$

\triangleright Method:

- Sample points within I
- Calculate the mean of the random variable within I
- Integral $=$ sampled area \times mean
\triangleright Advantages: the method works even without knowing the analytical form of f, and also if f is not continuous

Trivial integration example

Task: find the shaded area, $\int_{1}^{5} x^{2} \mathrm{~d} x$

Analytical solution

import sympy
x = sympy.Symbol("x")
i = sympy.integrate ($\mathrm{x} * * 2$)
i.subs(x, 5) - i.subs(x, 1)

124/3
float(i.subs(x, 5) - i.subs(x, 1))
41.333333333333336

```
Numerical solution
\(N=10 \theta \_\theta 0 \theta\)
accum \(=\theta\)
for \(i\) in range \((N)\) :
    \(x=\) numpy.random.uniform(1, 5)
    accum \(+=x * * 2\)
area = 4
integral \(=\) area \(*\) accum / float \((N)\)
41.278
```


Simple integration example

Task: find the shaded area, $\int_{1}^{3} e^{x^{2}} \mathrm{~d} x$

Analytical solution

```
import sympy
x = sympy.Symbol("x")
i = sympy.integrate(sumpy.exp(x**2))
i.subs(x, 3) - i.subs(x, 1)
-sqrt(pi)*erfi(1)/2 + sqrt(pi)*erfi(3)/2
float(i.subs(x, 3) - i.subs(x, 1))
1443.082471146807
```


Numerical solution

```
N = 100_ Q O0
accum = 0
for i in range(N):
    x = numpy.random.uniform(1, 3)
    accum += numpy.exp(x**2):
        count += 1
area = 3 - 1
integral = area * accum / float(N)
1451.3281492713274
```


Analytical solution

```
import sympy
x = sympy.Symbol("x")
y = sympy.Symbol("y")
d1 = sympy.integrate(sympy.cos(x**4) + 3 * y**2, x)
d2 = sympy.integrate(d1.subs(x, 6) - d1.subs(x, 4), y)
sol = d2.subs(y, 1) - d2.subs(y, Q)
float(sol)
2.005055086749674
```


Numerical solution

$$
\int_{0}^{1} \int_{4}^{6} \cos \left(x^{4}\right)+3 y^{2} \mathrm{~d} x \mathrm{~d} y
$$

Relevant tools

(if you can't use Python...)

Relevant commercial tools

Example tools with Excel integration:
\triangleright Palisade TopRank®
\triangleright Oracle Crystal Ball®

Typically quite expensive...
$24 / 37$

Free plugins for Microsoft Excel

\triangleright A free Microsoft Excel plugin from Vose Software

- vosesoftware.com/products/modelrisk/
- "standard" version is free (requires registration)
\triangleright Simtools, a free add-in for Microsoft Excel by R. Myerson, professor at the University of Chicago
- home.uchicago.edu/ rmyerson/addins.htm
\triangleright MonteCarlito, a free add-in for Microsoft Excel
- montecarlito.com
- distributed under the terms of the GNU General Public Licence

Beware the risks of Excel!

\triangleright Student finds serious errors in austerity research undertaken by Reinhart and Rogoff (cells left out of calculations of averages...)
\triangleright JP Morgan underestimates value at risk due to a spreadsheet error
\triangleright London 2012 Olympics: organization committee oversells synchronized swimming events by 10000 tickets
\triangleright Cement factory receives 350000 USD fine for a spreadsheet error (2011, Arizona)

Sampling methods

\triangleright With standard random sampling, you may end up with samples unevenly spread out over the input space

Latin

Hypercube Sampling
\triangleright Latin Hypercube Sampling (LHS):

- split up each input variable into a number of equiprobable intervals
- sample separately from each interval
\triangleright Also called stratified sampling without replacement
\triangleright Typically leads to faster convergence than Monte Carlo procedures using standard random sampling

Sampling methods illustrated

Standard sampling (one dimensional):
1 generate a random number from a uniform distribution between o and 1

2 use the inverse CDF of the target distribution (the percentile function) to calculate the corresponding output

3 3 repeat

Illustrated to the right with the normal distribution.

Sampling methods illustrated

Standard sampling (one dimensional):
1 generate a random number from a uniform distribution between 0 and 1

2 use the inverse CDF of the target distribution (the percentile function) to calculate the corresponding output

3 repeat

Illustrated to the right with the normal distribution.

Sampling methods illustrated

Standard sampling (one dimensional):
1 generate a random number from a uniform distribution between 0 and 1

2 use the inverse CDF of the target distribution (the percentile function) to calculate the corresponding output

3 repeat

Illustrated to the right with the normal distribution.

Sampling methods illustrated

Standard sampling (one dimensional):
11 generate a random number from a uniform distribution between 0 and 1
2. use the inverse CDF of the target distribution (the percentile function) to calculate the corresponding output
3) repeat

Illustrated to the right with the normal distribution.

Sampling methods illustrated

Standard sampling (one dimensional):
1 generate a random number from a uniform distribution between o and 1

2 use the inverse CDF of the target distribution (the percentile function) to calculate the corresponding output

3 repeat

Illustrated to the right with the normal distribution.

ENGINEERING

Latin Hypercube Sampling: illustration

Latin hypercube sampling (one dimensional):
1 split the $[0,1]$ interval into 10 equiprobable intervals

2 propagate via the inverse CDF to the output distribution

3 take $N / 10$ standard samples from each interval of the output distribution

Illustrated to the right with the normal distribution.

Latin Hypercube Sampling: illustration

Latin hypercube sampling (one dimensional):
1 split the $[0,1]$ interval into 10 equiprobable intervals

2 propagate via the inverse CDF to the output distribution

3 take $N / 10$ standard samples from each interval of the output distribution

Illustrated to the right with the normal
 distribution.

Latin Hypercube Sampling: illustration

Latin hypercube sampling (one dimensional):
1 split the $[0,1]$ interval into 10 equiprobable intervals

2 propagate via the inverse CDF to the output distribution

3 take $N / 10$ standard samples from each interval of the output distribution

Illustrated to the right with the normal distribution.

Latin Hypercube Sampling: illustration

Latin hypercube sampling (one dimensional):
1 split the $[0,1]$ interval into 10 equiprobable intervals

2 propagate via the inverse CDF to the output distribution

3 take $N / 10$ standard samples from each interval of the output distribution

Illustrated to the right with the normal distribution.

Latin Hypercube Sampling: illustration

Latin hypercube sampling (one dimensional):
1 split the $[0,1]$ interval into 10 equiprobable intervals

2 propagate via the inverse CDF to the output distribution

3 take $N / 10$ standard samples from each interval of the output distribution

Illustrated to the right with the normal distribution.

Latin Hypercube Sampling: illustration

Latin hypercube sampling (one dimensional):
1 split the $[0,1]$ interval into 10 equiprobable intervals

2 propagate via the inverse CDF to the output distribution

3 take $N / 10$ standard samples from each interval of the output distribution

Illustrated to the right with the normal distribution.

Note: this method assumes we know

Another random sampling technique you may see in the literature: use of low-discrepancy sequences to implement quasi-Monte Carlo sampling
\triangleright low-discrepancy (or "quasi-random") sequences are constructed deterministically using formulæ
\triangleright they fill the input space more quickly than pseudorandom sequences, so lead to faster convergence
\triangleright intuition behind these types of sequences: each time you draw a new point it is placed as far away as possible from all points you already have

A low discrepancy sequence is a deterministic mathematical sequence that doesn't show clusters and tends to fill space more uniformly than pseudo-random points. (Pseudo-random means as random as you can get when working with a computer.)

Commonly used low discrepancy sequences for Monte Carlo modelling include the Halton sequence and the Sobol' sequence.

More information: see the Jupyter/Python notebook at risk-engineering.org

The Saint Petersberg game

\triangleright You flip a coin repeatedly until a tail first appears

- the pot starts at $1 €$ and doubles every time a head appears
- you win whatever is in the pot the first time you throw tails and the game ends
\triangleright For example:
- T (tail on the first toss): win $1 €$
- H T (tail on the second toss): win $2 €$
- H H T: win $4^{€}$
- HHHT: win $8 €$
\triangleright Reminder (see associated slides on Economic viewpoint on risk transfer): the expected value of this game is infinite
\rightarrow let's estimate the expected value using a Monte Carlo simulation

The Saint Petersburg game and limits of Monte Carlo methods

```
import numpy, matplotlib.pyplot as plt
def petersburg():
    payoff = 1
    while numpy.random.uniform() > 0.5:
        payoff *= 2
    return payoff
N = 1_OOQ_OQ0
games = numpy.zeros(N)
for i in range(N):
    games[i] = petersburg()
plt.hist(numpy.log(games), alpha=0.5)
print(games.mean())
12.42241
```


This game illustrates a situation where very unlikely events have an extremely high impact on the mean outcome. Monte Carlo simulation will not allow us to obtain a good estimation of the true (theoretical) expected value.

ENGINEERING

Image credits
\triangleright Monte Carlo casino on slide 3: Wikimedia Commons, CC BY licence
\triangleright Body mass index chart on slide 10: InvictaHOG from Wikimedia Commons, public domain
\triangleright Cat on slide 12: Marina del Castell via flic. $\mathrm{kr} / \mathrm{p} /$ otQtCc, CC BY licence
\triangleright Harvard course on Monte Carlo methods, harvard.edu/courses/am207/

For
 more information

\triangleright MIT OpenCourseWare notes from the Numerical computation for mechanical engineers course
\triangleright Article Principles of Good Practice for Monte Carlo Techniques, Risk Analysis, 1994, DOI: 10.1111/j.1539-6924.1994.tboo265.x
\triangleright Book The Monte Carlo Simulation Method for System Reliability and Risk Analysis, Enrico Zio, ISBN: 978-1447145882

For more free content on risk engineering,
visit risk-engineering.org

Feedback welcome!

Was some of the content unclear? Which parts were most useful to you? Your comments to feedback@risk-engineering.org (email) or @LearnRiskEng (Twitter) will help us to improve these materials. Thanks!

OPEN
ACCESS

This presentation is distributed under the terms of the Creative Commons Attribution - Share Alike licence
\& fb.me/RiskEngineering

For more free content on risk engineering, visit risk-engineering.org

